Algebraic Geometry Part III Michaelmas 2016-2017

Alexandre Daoud

May 27, 2017

Contents

1 Basic Definitions 1
1.1 Sheaves and Stalks 1
1.2 Results from Commutative Algebra 8
1.3 Spectrum of a Ring 11
1.4 Ringed Spaces 14
2 Schemes 16
2.1 Definitions 16
2.2 Schemes Associated to Graded Rings 19
2.3 Fibred Products 22
$2.4 \mathcal{O}_{X}$-modules 24
2.5 Quasi-coherent sheaves 26
2.6 Sheaves Associated to Graded Modules 30
3 Divisors and Differentials 34
3.1 Invertible Sheaves and Cartier Divisors 34
3.2 Differential Forms 38
4 Cohomology 40
4.1 Results from Category Theory 40
4.2 Cohomology of Sheaves 43
4.3 Flasque Sheaves 46
4.4 Cohomology of Affine Schemes 48
4.5 Cech Cohomology 50
4.6 Cohomology of Schemes 53
5 Cohomology of Projective Schemes 56
5.1 Euler Characteristic and Hilbert Polynomials. 61

1 Basic Definitions

1.1 Sheaves and Stalks

Definition 1.1.1. Let X be a topological space, $\operatorname{Op}(X)$ the poset of open sets of X considered as a category and \mathcal{C} a category. We define a presheaf of \mathcal{C}-objects on X, denoted \mathcal{F},
to be a contravariant functor $\mathcal{F}: \mathbf{O p}(X) \rightarrow \mathcal{C}$. Given an open set $U \subseteq X$, we refer to the elements of $\mathcal{F}(U)$ as the sections of U. Moreover, given an inclusion of open sets $V \subseteq U$ we say that $\mathcal{F}(U \subseteq V)=F(V) \rightarrow F(U)$ is the restriction of U to V where $s \in \mathcal{F}(U)$ is mapped to $\left.s\right|_{V} \in \mathcal{F}(V)$.

Finally, we define a sheaf on X to be a presheaf \mathcal{F} such that if

$$
U=\bigcup_{i} U_{i}
$$

for some open sets $U_{i} \subseteq X$ and if $s_{i} \in \mathcal{F}\left(U_{i}\right)$ with $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$ for all i, j then there exists a unique $s \in \mathcal{F}(U)$ such that $\left.s\right|_{U_{i}}=s_{i}$ for all i.

Example 1.1.2. Let X be a topological space. Then the functor $\mathcal{F}: \mathbf{O p}(X) \rightarrow \operatorname{AbGrp}$ given by

$$
\mathcal{F}(U)=\{\text { continuous functions } U \rightarrow \mathbb{R}\}
$$

is a sheaf.
Example 1.1.3. From now on, \mathcal{C} will either be $\mathbf{A b G r p}, \operatorname{Ring}$ or $\operatorname{Mod}_{\mathbf{R}}$ for some commutative ring R. Moreover, sheaf shall be synonymous with sheaf of \mathcal{C}-objects.

Definition 1.1.4. Let (I, \leq) be a directed poset. Suppose for each $i \in I$ we have an abelian $\operatorname{group} A_{i}$ and for each pair $i \leq j$ we have a map $\varphi_{i j}: A_{i} \rightarrow A_{j}$ with $\varphi_{i i}=\operatorname{id}_{A_{i}}$ such that whenever $i \leq j \leq k$, we have $\varphi_{i k}=\varphi_{j k} \circ \varphi_{i j}$. Then we say that $\left(A_{i}, \varphi_{i j}\right)$ is a directed system of abelian groups.

Moreover, consider pairs $\left(A_{i}, a_{i}\right)$ with $a_{i} \in A_{i}$. Define an equivalence relation on these pairs where $\left(A_{i}, a_{i}\right) \sim\left(A_{j}, a_{j}\right)$ if and only if there exists a $k \geq i, j$ such that $\varphi_{i k}\left(a_{i}\right)=\varphi_{j k}\left(a_{j}\right)$. Denoting the equivalence class of $\left(A_{i}, a_{i}\right)$ under \sim as $\left[A_{i}, a_{i}\right]$, we may define a group operation on the set of all such equivalence classes as follows:

$$
\left[A_{i}, a_{i}\right]+\left[A_{j}, a_{j}\right]=\left[A_{k}, \varphi_{i k}\left(a_{i}\right)+\varphi_{j k}\left(a_{j}\right)\right]
$$

for any $k \geq i, j$. We call this group the direct limit of the direct system $\left(A_{i}, \varphi_{i j}\right)$ and we denote it by $\lim _{\rightarrow i \in I} A_{i}$.
Definition 1.1.5. Let X be a topological space, \mathcal{F} a presheaf of abelian groups on X and $x \in X$. Consider the directed poset (I, \subseteq) consisting of open sets containing x, ordered by inclusion. Then $\mathcal{F}\left(U_{i}\right)$, together with the restriction homomorphisms, define a direct system. We define the stalk of \mathcal{F} at x by

$$
\mathcal{F}_{x}=\underset{\overrightarrow{U_{i} \in I}}{\lim } \mathcal{F}\left(U_{i}\right)
$$

Definition 1.1.6. Let X be a topological space and \mathcal{F}, \mathcal{G} presheaves of abelian group on X. We define a morphism of presheaves to be a natural transformation $\varphi: F \rightarrow G$. In other words, φ is given by a collection of group homomorphisms $\varphi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ such that if $V \subseteq U$ then the diagram

is commutative. Moreover, we say that φ is an isomorphism of presheaves if it has an inverse. We denote by $\operatorname{Sh}(X)$ the category of all sheaves on X together with their morphisms.

Remark. Given a morphism of presheaves $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ and a point $x \in X$ there is a natural homomorphism of stalks

$$
\begin{aligned}
\varphi_{x}: \mathcal{F}_{x} & \rightarrow \mathcal{G}_{x} \\
(U, s) & \mapsto\left(U, \varphi_{U}(s)\right)
\end{aligned}
$$

Theorem 1.1.7. Let X be a topological space and \mathcal{F} a presheaf of abelian groups on X. Then there exists a sheaf \mathcal{F}^{+}and a morphism $\alpha: \mathcal{F} \rightarrow \mathcal{F}^{+}$such that, given any sheaf \mathcal{G} and morphism of sheaves $\varphi: \mathcal{F} \rightarrow \mathcal{G}, \varphi$ factors through \mathcal{F}^{+}uniquely:

for some morphism of sheaves $\mathcal{F}^{+} \rightarrow \mathcal{G}$. We shall refer to \mathcal{F}^{+}as the sheaf associated to \mathcal{F} or the sheafification of \mathcal{F}.

Proof. Fix an open set $U \subseteq X$ and let $\left\{U_{i}\right\}_{i \in I}$ be an open cover for some indexing set I. We claim that

$$
\mathcal{F}^{+}(U)=\left\{s: U \rightarrow \bigcup_{x \in U} \mathcal{F}_{x} \mid \exists x \in W \subseteq U \text { open, } t \in \mathcal{F}(W) \text { s.t } s(y)=[W, t] \forall y \in W\right\}
$$

defines the desired sheaf along with the natural restriction morphisms. This clearly defines a presheaf so it thus suffices to show that \mathcal{F}^{+}satisfies the sheaf axiom. Let $s_{i} \in \mathcal{F}^{+}\left(U_{i}\right)$ be sections such that for all $i, j \in I$ we have $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$. Define a function

$$
\begin{aligned}
s: U & \rightarrow \bigcup_{x \in U} \mathcal{F}_{x} \\
y & \mapsto s_{i}(y)
\end{aligned}
$$

for some i such that $y \in U_{i}$. Then s is well-defined since the sections s_{i} all agree on overlaps. Now, given any $x \in U$, we clearly have $s(x) \in \mathcal{F}_{x}$ since $s(x)=s_{i}(x)$ for any $i \in I$ such that $U_{i} \ni x$. Furthermore, for each s_{i}, there exists an open neighbourhood $x \in W_{i} \subseteq U$ and a section $t \in \mathcal{F}(W)$ such that for all $y \in W_{i}$ we have $s_{i}(y)=[W, t]$. Clearly, we can take any of these W_{i} and the same will apply for s whence $s \in \mathcal{F}^{+}(U)$. Lastly, we must show that such an s is unique. To this end, suppose there exists a $t \in \mathcal{F}^{+}(U)$ such that their restrictions $s_{i}, t_{i} \in \mathcal{F}^{+}\left(U_{i}\right)$ agree. Then for all $x \in U$, there exists a $U_{i} \ni x$ such that $s_{i}(x)=t_{i}(x)$ and so $s(x)=t(x)$. Since this holds for all $x \in U$, we must have that $s=t$. We have thus shown that \mathcal{F}^{+}is indeed a sheaf.

Now, given $s \in \mathcal{F}(U)$, define $\alpha: \mathcal{F} \rightarrow \mathcal{F}^{+}$by setting $\alpha_{U}(s)$ to be the function mapping $x \in U$ to $[U, s]$. This is easily seen to be a morphism of presheaves as it is compatible with the natural restriction morphisms.

To see that φ factors uniquely through \mathcal{F}^{+}, we must construct a unique morphism of sheaves $\psi: \mathcal{F}^{+} \rightarrow \mathcal{G}$. To this end, fix $s \in \mathcal{F}^{+}(U)$ and for each U_{i} in the open cover, choose $s_{i} \in \mathcal{F}\left(U_{i}\right)$ such that $\alpha_{U_{i}}\left(s_{i}\right)=\left.s\right|_{U_{i}}$. Now set $t_{i}=\varphi\left(s_{i}\right)$. Since φ is a morphism of presheaves, it follows that $\left.t_{i}\right|_{U_{i} \cap U_{j}}=\left.t_{j}\right|_{U_{i} \cap U_{j}}$. Since \mathcal{G} is a sheaf, there exists a unique $t \in \mathcal{G}(U)$ such that $\left.t\right|_{U_{i}}=t_{i}$. We must therefore have that $\psi_{U}(s)=t$ and we are done.

Remark. Let X be a topological space and \mathcal{F} a presheaf. For all $x \in X$, we have a homorphism of groups

$$
\alpha_{x}: \mathcal{F}_{x} \rightarrow \mathcal{F}_{x}^{+}
$$

This is infact an isomorphism since the sections of \mathcal{F}^{+}are locally just sections of \mathcal{F}.
Example 1.1.8. Let $X=\{a, b\}$ be a topological space where the open sets are $\varnothing, X, U=$ $\{a\}$ and $V=\{b\}$. Define a presheaf of abelian groups on X by setting

$$
\mathcal{F}(\varnothing)=0, \quad \mathcal{F}(X)=\mathbb{Z}, \quad \mathcal{F}(U)=0, \quad \mathcal{F}(V)=0
$$

with the natural restriction homomorphisms. We first calculate the stalks of \mathcal{F}. Recall that the stalk at a is given by

$$
\mathcal{F}_{a}=\frac{\{(A, s) \mid A \ni a, s \in \mathcal{F}(A)\}}{\sim}
$$

where \sim is the equivalence relation given by $(U, s) \sim(V, t)$ if and only if there exists an open $a \in W \subseteq U \cap V$ such that $\left.s\right|_{W}=\left.t\right|_{W}$. We have that

$$
\{(A, s) \mid A \ni a, s \in \mathcal{F}(A)\}=\{(U, 0), \ldots,(X,-1),(X, 0),(X, 1), \ldots\}
$$

Clearly the elements of this set are all equivalent so we have $\mathcal{F}_{a}=0$. Similarly, we find that $\mathcal{F}_{b}=0$. It then follows that all sections of \mathcal{F}^{+}are necessarily 0 .
Example 1.1.9. Let $X=\{a, b\}$ be a topological space where the open sets are $\varnothing, X, U=$ $\{a\}$ and $V=\{b\}$. Define a presheaf of abelian groups on X by setting

$$
\mathcal{F}(\varnothing)=0, \quad \mathcal{F}(X)=0, \quad \mathcal{F}(U)=\mathbb{Z}, \quad \mathcal{F}(V)=\mathbb{Z}
$$

We again calculate the stalks of this presheaf. The set to consider in the direct limit for \mathcal{F}_{a} is

$$
\{(A, s) \mid A \in a, s \in \mathcal{F}(A)\}=\{(X, 0), \ldots,(U,-1),(U, 0),(U, 1), \ldots\}
$$

Clearly the only equivalent elements are $(X, 0)$ and $(U, 0)$ so $\mathcal{F}_{a}=\mathbb{Z}$. Similarly, we have $\mathcal{F}_{b}=\mathbb{Z}$. By the definition of the sheafification, we then have that $\mathcal{F}^{+}(U)=\mathcal{F}^{+}(V)=\mathbb{Z}$ and $\mathcal{F}^{+}(X)=\mathbb{Z} \oplus \mathbb{Z}$.

Definition 1.1.10. Let X be a topological space and $\varphi: F \rightarrow G$ a morphism of presheaves. We define the presheaf kernel of φ, denoted $\operatorname{ker} \varphi^{\text {pre }}$ by

$$
\left(\operatorname{ker} \varphi^{\mathrm{pre}}\right)(U)=\operatorname{ker}\left(\varphi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)\right)
$$

Similarly, we define the presheaf image of $\varphi, \operatorname{denoted} \operatorname{im} \varphi^{\text {pre }}$ by

$$
\left(\operatorname{im} \varphi^{\mathrm{pre}}\right)^{+}(U)=\operatorname{im}\left(\varphi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)\right)
$$

Furthermore, if \mathcal{F} and \mathcal{G} are also sheaves then we also have the sheaf kernel, denoted $\operatorname{ker} \varphi$, defined in the same way and the sheaf image, defined by $\operatorname{im} \varphi=\left(\operatorname{im} \varphi^{\mathrm{pre}}\right)^{+}$.

Finally, we say that φ is injective if $\operatorname{ker} \varphi=0$ and surjective if $\operatorname{im} \varphi=G$.
Proposition 1.1.11. Let X be a topological space and $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ a morphism of presheaves. Then $\operatorname{ker} \varphi^{\text {pre }}$ and $\operatorname{im} \varphi^{\text {pre }}$ are presheaves of abelian groups. If, in addition, \mathcal{F} and \mathcal{G} are sheaves then $\operatorname{ker} \varphi$ is also a sheaf.

Proof. Since the kernel of any homomorphisms of abelian groups is again an abelian group, $\operatorname{ker} \varphi^{\text {pre }}$ indeed assigns an abelian group to each open set $U \subseteq X$. Furthermore, since the mapping between the empty sets is vacuously 0 , we have that $\left(\operatorname{ker} \varphi^{\text {pre }}\right)(\varnothing)=0$. Finally, the restriction homomorphisms are made evident in the following diagram:

A similar argument also shows that $\operatorname{im} \varphi^{\text {pre }}$ is a presheaf. To show that $\operatorname{ker} \varphi$ is a sheaf, assume that we are given an open set $U \subseteq X$ and an open cover $U=\bigcup_{i \in I} U_{i}$ for some indexing set I. Suppose that $s_{i} \in(\operatorname{ker} \varphi)\left(U_{i}\right)$ such that $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$ for all i, j. We need to show that there exists a unique $s \in(\operatorname{ker} \varphi)(U)$ such that $\left.s\right|_{U_{i}}=s_{i}$ for all $i \in I$. Since $(\operatorname{ker} \varphi)(U) \subseteq \mathcal{F}(U)$ and \mathcal{F} is a sheaf, it follows that the sections local s_{i} glue together to give a global section $s \in \mathcal{F}(U)$. We claim that such an s is the desired global section. To this end, we have that $\varphi\left(s_{i}\right)=0$ for all $i \in I$. Since \mathcal{G} is a sheaf, these local sections must glue together to give a global section $\varphi(s)=0$. Hence $s \in(\operatorname{ker} \varphi)(U)$. The uniqueness of such an s follows immediately from the fact that \mathcal{F} is a sheaf.

Example 1.1.12. Let $X=\{a, b\}$ be a topological space where the open sets are $\varnothing, X, U=$ $\{a\}$ and $V=\{b\}$. Define a sheaf on X by setting

$$
\mathcal{F}(\varnothing)=0, \quad \mathcal{F}(X)=\mathbb{Z} \oplus \mathbb{Z}, \quad \mathcal{F}(U)=\mathbb{Z}, \quad \mathcal{F}(V)=\mathbb{Z}
$$

Define the sheaf \mathcal{G} on X by setting

$$
\mathcal{G}(\varnothing)=0, \quad \mathcal{F}(X)=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}, \quad \mathcal{F}(U)=\mathbb{Z} / 2 \mathbb{Z}, \quad \mathcal{F}(V)=\mathbb{Z} / 2 \mathbb{Z}
$$

Furthermore, define a morphism of sheaves between $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ by setting

$$
\begin{aligned}
\varphi_{X}: \mathcal{F}(X) & \rightarrow \mathcal{G}(X) \\
(m, n) & \mapsto(\bar{m}, \bar{n}) \\
\varphi_{U}: \mathcal{F}(U) & \rightarrow \mathcal{G}(U) \\
m & \mapsto \bar{m} \\
\varphi_{V}: \mathcal{F}(V) & \rightarrow \mathcal{G}(V) \\
n & \mapsto \bar{n}
\end{aligned}
$$

Then $(\operatorname{ker} \varphi)(X)=2 \mathbb{Z} \times 2 \mathbb{Z}$ and $(\operatorname{ker} \varphi)(U)=2 \mathbb{Z}=(\operatorname{ker} \varphi) U$ and $\operatorname{im} \varphi=\mathcal{G}$.
Theorem 1.1.13. Let $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of shaves on a topological space X. Then

1. φ is injective if and only if $\varphi_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ is injective for all $x \in X$.
2. φ is surjective if and only if $\varphi_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ is surjective for all $x \in X$.
3. φ is an isomorphism if and only if $\varphi_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ is an isomorphism for all $x \in X$.
[^0]Proof. Part 1: First suppose that φ is injective, fix some $x \in X$ and choose an equivalence class $[U, s] \in \mathcal{F}_{x}$. Then $0=\varphi_{x}([U, s])=\left[U, \varphi_{U}(s)\right]$ implies that there exists an open $W \ni x$ with $W \subseteq U$ such that $\left.\varphi_{U}(s)\right|_{W}=0$. This in turn implies that $\varphi_{W}\left(\left.s\right|_{W}\right)=0$. Now φ is injective by hypothesis so $\left.s\right|_{W}=0$. Hence $0=[W, s]=[U, s]$ as desired.

Now suppose that φ_{x} is injective for all $x \in X$. Given an open set $U \subseteq X$, assume that $\varphi_{U}(s)=0$ with $s \in \mathcal{F}(U)$. We then have that

$$
0=[U, 0]=\left[U, \varphi_{U}(s)\right]=\varphi_{x}([U, s])
$$

Since φ_{x} is injective, we thus have that $[U, s]=0$. This implies that there exists some $W \ni x$ open with $W \subseteq U$ and $\left.s\right|_{W}=0$. Since this applies to all $x \in X$ and since \mathcal{F} is a sheaf, it follows that $s=0$.

Part 2: Assume that φ is surjective, in other words, $\left(\operatorname{im} \varphi^{\mathrm{pre}}\right)^{+}=\mathcal{G}$. Then the homomorphism $\varphi_{x}: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ is just

$$
\varphi_{x}: \mathcal{F}_{x} \rightarrow\left(\operatorname{im} \varphi^{\mathrm{pre}}\right)_{x}^{+} \cong \operatorname{im} \varphi_{x}^{\mathrm{pre}}
$$

which is trivially surjective.
Now suppose that φ_{x} is surjective for all $x \in X$. We want to show that for all open neighbourhoods $U \subseteq X$, the group homomorphism

$$
\varphi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)
$$

is surjective. To this end, fix an open $U \subseteq X$ and let $t \in \mathcal{G}(U)$. We need to show that there exists an $s \in \mathcal{F}(U)$ such that $\varphi_{U}(s)=t$. By hypothesis, given x, we have that for all $[W, b] \in \mathcal{G}_{x}$, there exists a $[V, a] \in \mathcal{F}_{x}$ such that

$$
\varphi_{x}([V, a])=[W, b]
$$

In particular, there exists an $s \in \mathcal{F}(U)$ and an open neighbourhood $x \in V \subseteq U$ such that $\varphi_{x}([V, s])=[U, t]$. But the left hand side of this equation is equal to $\left[V, \varphi_{U}\left(s_{x}\right)\right]$. By the definition of a stalk, this is equivalent to there existing an open neighbourhood $x \in W \subseteq V$ such that $\left.\varphi_{U}(s)\right|_{W}=t$. In other words, sections of \mathcal{G} are just locally the images of sections of \mathcal{F}. Passing to the sheafification, we then have that $\operatorname{im} \mathcal{F}=\mathcal{G}$ as desired.
Part 3: First suppose that φ is an isomorphism. Then it is injective and surjective and by Parts 1 and $2, \varphi_{x}$ is an isomorphism for each $x \in X$.

Conversely, suppose that each φ_{x} is an isomorphism for all $x \in X$. By Parts 1 and 2, φ is injective and surjective. Let $\mathcal{H}=\operatorname{im} \varphi^{\text {pre }}$. Since φ is injective, $\mathcal{F}(U)$ is isomorphic to $\mathcal{H}(U)$ for all open sets $U \subseteq X$. In particular, \mathcal{H} is a sheaf isomorphic to \mathcal{F}. Since φ is surjective, $\mathcal{H}^{+}=\mathcal{G}$. Since \mathcal{H} is a sheaf, $\mathcal{H}=\mathcal{G}$. Hence φ is an isomorphism.

Definition 1.1.14. Let X be a topological space. We define a complex of sheaves to be a sequence

$$
\cdots \longrightarrow \mathcal{F}_{-1} \xrightarrow{\varphi_{0}} \mathcal{F}_{0} \xrightarrow{\varphi_{1}} \mathcal{F}_{1} \xrightarrow{\varphi_{2}} \mathcal{F}_{2} \xrightarrow{\varphi_{2}} \cdots
$$

such that $\operatorname{im} \varphi_{i} \subseteq \operatorname{ker} \varphi_{i+1}$ for all i. We say that this complex is an exact sequence if we have $\operatorname{im} \varphi_{i}=\operatorname{ker} \varphi_{i+1}$ for all i. Furthermore, an exact sequence of the form

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0
$$

is called a short exact sequence.
Example 1.1.15. Let X be a topological space and A an abelian group. Define a presheaf \mathcal{F} by setting $\mathcal{F}(U)=A$ for all non-empty open sets $U \subseteq X$. We call \mathcal{F}^{+}the constant sheaf associated to A. Also define the sheaf \mathcal{G} by

$$
\mathcal{G}(U)=\{\text { continuous functions } U \rightarrow A\}
$$

where A is equipped with the discrete topology. Define a morphism $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ by sending $s \in \mathcal{F}(U)$ to the constant function

$$
\begin{aligned}
f_{s}: U & \rightarrow A \\
u & \mapsto s
\end{aligned}
$$

Then φ induces an isomorphism of sheaves $\varphi: \mathcal{F}^{+} \rightarrow \mathcal{G}$. This follows from showing the stalks of the two sheaves are isomorphic. Indeed, to show that $\varphi_{x}: \mathcal{F}_{x}^{+} \rightarrow \mathcal{G}_{x}$ is an injective, suppose that $\varphi_{x}([U, s])=0$. By definition, we have that $\left[U, \varphi_{U}(s)\right]=0$. This just means that, locally, $\varphi_{U}(s)$ is the zero function whence $s=0$ and so $[U, s]=0$.

For surjectivity, choose $[V, t] \in \mathcal{G}_{x}$. We need to exhibit a $[U, s] \in \mathcal{F}_{x}$ such that $\varphi_{x}([U, s])=$ [$V, t]$. By definition, t is a continuous function $t: V \rightarrow A$ so set $s=t(x)$ and $U=t^{-1}(\{s\})$. We claim that $[U, s]$ is the desired element of \mathcal{F}_{x}. We have that $\varphi_{x}([U, s])=\left[U, \varphi_{U}(s)\right]=$ $\left[U, f_{s}\right]$. Then $\left[U, f_{s}\right] \sim[V, t]$ if and only if there exists an open neighbourhood $x \in W$ such that $W \subseteq U \cap V$ and $\left.f_{s}\right|_{W}=\left.t\right|_{W}$. However, we may simply take $W=U$ and we are done.

Definition 1.1.16. Let X and Y be a topological space and $f: X \rightarrow Y$ a continuous mapping. If \mathcal{F} is a presheaf on X, we define the direct image of \mathcal{F} with respect to f, denoted f_{*}, to be the assignment

$$
\left(f_{*} \mathcal{F}\right)(V)=\mathcal{F}\left(f^{-1} V\right)
$$

giving rise to a presheaf on Y.
Proposition 1.1.17. Let X and Y be topological spaces, $f: X \rightarrow Y$ a continuous mapping and \mathcal{F} a sheaf on X. Then $\left(f_{*} \mathcal{F}\right)$ is a sheaf on Y.

Proof. The direct image is clearly a presheaf on Y with the natural restriction morphisms. To show that it is a sheaf, let $V \subseteq Y$ be an open neighbourhood and $\left\{V_{i}\right\}_{i \in I}$ an open cover of V where I is some indexing set. Choose $t_{i} \in\left(f_{*} \mathcal{F}\right)\left(V_{i}\right)$ such that $\left.t_{i}\right|_{V_{i} \cap V_{j}}=\left.t_{j}\right|_{V_{i} \cap V_{j}}$ for all i, j. Each t_{i} is in $\mathcal{F}\left(f^{-1} V_{i}\right)$ and satisfies $\left.t_{i}\right|_{f^{-1} V_{i} \cap f^{-1} V_{j}}=\left.t_{j}\right|_{f^{-1} V_{i} \cap f-1 V_{j}}$ for all i, j. Since \mathcal{F} is a sheaf, there exists a unique $t \in f^{-1} V$ such that $\left.t\right|_{f^{-1} V_{i}}=t_{i}$ for all i. Hence there exists a $t \in\left(f_{*} \mathcal{F}\right)(V)$ such that $\left.t\right|_{V_{i}}=t_{i}$ for all i. Thus, the direct image is a sheaf.

Example 1.1.18. Let X be a topological space, $x \in X$ and A an abelian group. Define a sheaf on X by setting

$$
\mathcal{F}(U)= \begin{cases}A & \text { if } x \in U \\ 0 & \text { if } x \notin U\end{cases}
$$

where $U \subseteq X$ is an open set. This is referred to as the skyscraper sheaf associated to A at x. Let $Z=\{x\}$ and define the inclusion map

$$
i: Z \hookrightarrow X
$$

Let \mathcal{G} be the constant sheaf on Z associated to A. Then $\mathcal{F}=i_{*} \mathcal{G}$.

1.2 Results from Commutative Algebra

Henceforth, all rings are assumed to be commutative.
Definition 1.2.1. Let R be a ring. We say that R is local if it has a unique maximal ideal.
Definition 1.2.2. Let R and S be local rings with maximal ideals \mathfrak{m}_{R} and \mathfrak{m}_{S}. A homomorphism of rings $\alpha: R \rightarrow S$ is said to be local if $\alpha\left(\mathfrak{m}_{R}\right) \subseteq \mathfrak{m}_{S}$.

Definition 1.2.3. Let R be a ring and $I \triangleleft R$ an ideal. We define the radical of I, denoted \sqrt{I} to be the set

$$
\sqrt{I}=\left\{r \in R \mid r^{n} \in I, n \in \mathbb{N}\right\}
$$

Proposition 1.2.4. Let R be a ring and $I \triangleleft R$ an ideal. Then

$$
\sqrt{I}=\bigcap_{\mathfrak{p} \supseteq I} \mathfrak{p}
$$

where the intersection is taken over all prime ideals \mathfrak{p} contained in I.
Proof. Omitted.
Proposition 1.2.5. Let K be algebraically closed and $I \triangleleft K\left[t_{1}, \ldots, t_{n}\right]$ a maximal ideal. Then $I=\left(t_{1}-a_{1}, \ldots, t_{n}-a_{n}\right)$ for some $a_{i} \in K$.

Proof. Omitted.
Definition 1.2.6. Let R be a ring and $S \subseteq R$ a subset. We say that S is multiplicatively closed if $1_{R} \in S$ and $s, t \in S$ implies that $s t \in S$.

Definition 1.2.7. Let R be a ring and $S \subseteq R$ a multiplicatively closed subset. Consider the set

$$
\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\}
$$

of formal fractions. Define an equivalence relation on this set with $a / s \sim b / s^{\prime}$ if and only if there exists $s^{\prime \prime} \in S$ such that $s^{\prime \prime}\left(a s^{\prime}-b s\right)=0$. We define

$$
S^{-1} A=\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\} / \sim
$$

to be the ring of fractions of R with respect to S with ring operations given by

$$
\begin{aligned}
\frac{a}{s}+\frac{b}{t} & =\frac{a t+b s}{s t} \\
\frac{a}{s} \cdot \frac{b}{t} & =\frac{a b}{s t}
\end{aligned}
$$

Example 1.2.8. Let $R=\mathbb{Z}$ and $S=\mathbb{Z} \backslash\{0\}$. Then $S^{-1} R=\mathbb{Q}$.
Remark. There is a natural inclusion homomorphism

$$
\begin{aligned}
\alpha: R & \hookrightarrow S^{-1} R \\
r & \mapsto \frac{r}{1}
\end{aligned}
$$

Proposition 1.2.9. Let R be a ring and $I \triangleleft R$ an ideal. Then

$$
S^{-1} I=\left\{\left.\frac{r}{s} \in S^{-1} R \right\rvert\, r \in I\right\}
$$

is an ideal of $S^{-1} R$. Moreover, any ideal of $S^{-1} R$ is of this form.
Proof. Fix an ideal of $I \triangleleft R$. We must show that ($S^{-1} I,+$) is a subgroup of $\left(S^{-1} R,+\right)$ and that for all $S^{-1} I$ absorbs multiplication by elements of $S^{-1} R$.
$S^{-1} I$ clearly contains the additive identity of $S^{-1} R$ since I contains the additive identity of R. Fix $a / b, c / d \in S^{-1} I$ where $a, c \in I$ and $b, d \in S$. Then

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Now, S is multiplicatively closed so $b d \in S$. Furthermore, $a d+b c \in I$ so indeed $a / b+$ $c / d \in S^{-1} I$. Clearly, all elements of $S^{-1} I$ have additive inverses so ($S^{-1} I,+$) is indeed a subgroup of $\left(S^{-1} R, I\right)$. To prove that S^{-1} absorbs multiplication by elements of $S^{-1} R$, choose $a / b \in S^{-1} I$ and $c / d \in S^{-1} R$. Then

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

As before, $b d \in S$ and $a c \in I$ so the product of the two fractions is again in $S^{-1} I$ whence it is an ideal of $S^{-1} R$.

To show that any ideal of the ring of fractions is of this form, choose an ideal $J \triangleleft S^{-1} R$. Let I be the set consisting of all numerators of fractions in J. We claim that I is an ideal of R, it would then immediately follow that $J=S^{-1} I$.
I clearly contains the additive identity of R since J is an ideal of $S^{-1} R$. Furthermore, given $a, b \in I, a+b \in I$ since $a / 1+b / 1=(a+b) / 1 \in J . I$ also clearly contains additive inverses and so $(I,+)$ is a subgroup of $(R,+)$. Now let $i \in I$ and $r \in R$. Choose any fraction in J with i as its numerator, say $i / j \in J$. Then $i / j \cdot r / 1=i r / j \in J$ and so $i r \in I$ whence I is an ideal.

Proposition 1.2.10. Let R be a ring and $S \subseteq R$ a multiplicatively closed subset. Then there is a one-to-one inclusion preserving correspondence

$$
\begin{aligned}
\left\{\begin{array}{r}
\text { prime } \mathfrak{p} \triangleleft R \\
\mathfrak{p} \cap S=\varnothing
\end{array}\right\} & \longleftrightarrow\left\{\text { prime } \mathfrak{p} \triangleleft S^{-1} R\right\} \\
\mathfrak{p} & \longleftrightarrow S^{-1} \mathfrak{p}
\end{aligned}
$$

Proof. We must check that the correspondence is well-defined and the two mappings are mutually inverse. To this end, fix a prime ideal $\mathfrak{p} \triangleleft R$ such that $\mathfrak{p} \cap S=\varnothing$ and let $a / b \cdot c / d \in$ $S^{-1} \mathfrak{p}$. We need to show that either $a / b \in S^{-1} \mathfrak{p}$ or $c / d \in S^{-1} \mathfrak{p}$. Choose u, v such that $a b / c d=u / v$. Then there exists $z \in S$ such that $z(a b v-c d u)=0$. It then follows that $z a b v \in \mathfrak{p}$. Since \mathfrak{p} is prime, one of z, a, b or v must be in \mathfrak{p}. But $\mathfrak{p} \cap S=\varnothing$ so it cannot be z or v. Hence either a or b is in \mathfrak{p} whence either a / b or $c / d \in S^{-1} \mathfrak{p}$.

Conversely, suppose that $\mathfrak{q} \triangleleft S^{-1} R$ is prime. We need to show that the ideal \mathfrak{p} consisting of all numerators in \mathfrak{q} is prime. To this end, let $a b \in \mathfrak{p}$. Choose a fraction in \mathfrak{q} with $a b$ as its numerator, say $a b / c d$. By definition this is equal to $a / b \cdot c / d \in \mathfrak{q}$. But \mathfrak{q} is prime so either $a / c \in \mathfrak{q}$ or $b / d \in \mathfrak{q}$ whence either a or b is in \mathfrak{p}. Thus the maps are well defined and do map prime ideals to prime ideals.

We must now check that the maps are mutually inverse. Label the forward mapping φ and the backwards map ψ. First let $\mathfrak{p} \triangleleft R$ be prime. We want to show that $\psi(\varphi(\mathfrak{p}))=\mathfrak{p}$.

Definition 1.2.11. Let R be a ring and $\mathfrak{p} \triangleleft R$ a prime ideal. Define a multiplicative subset $S=R \backslash \mathfrak{p}$. We call the ring of fractions $S^{-1} R$ the localisation of R at \mathfrak{p} and denote it $R_{\mathfrak{p}}$.

Proposition 1.2.12. Let R be a ring and $\mathfrak{p} \triangleleft R$ prime. Then $R_{\mathfrak{p}}$ is a local ring with unique maximal ideal given by $\mathfrak{p}_{\mathfrak{p}}:=S^{-1} \mathfrak{p}$.

Proof. Let \mathfrak{m} be an ideal not contained in $\mathfrak{p}_{\mathfrak{p}}$. Choose a fraction $a / b \in \mathfrak{m}$. Then both a and b are contained in $R \backslash \mathfrak{p}$. By definition of the ring of fractions, this implies that the fraction b / a is an element of $R_{\mathfrak{p}}$. Hence $1_{R_{\mathfrak{p}}}=a / b \cdot b / a \in \mathfrak{m}$ whence $\mathfrak{m}=R_{\mathfrak{p}}$.

Remark. Let R be a ring and let $S=\left\{1, b, b^{2}, \ldots\right\}$ be a multiplicatively closed power set for some $b \in R$. We shall write $R_{b}=S^{-1} R$.

Moreover, note that all these definitions can be generalised to arbitrary modules over a commutative ring. More precisely, if R is a commutative ring, M an R-module and S^{-1} a multiplicative set in R then $S^{-1} M$ is an $S^{-1} R$-module. Moreover, if $M \rightarrow N$ is an R-module homomorphism, we then have an induced homomorphism $S^{-1} M \rightarrow S^{-1} N$ of $S^{-1} R$-modules. In fact, $S^{-1}(\cdot)$ is an exact functor $\operatorname{Mod}_{\mathbf{R}} \rightarrow \operatorname{Mod}_{\mathbf{S}^{-1} \mathbf{R}}$.

Definition 1.2.13. Let R be a ring and $M, N R$-modules. Let L denote the free R-module generated by elements of $M \times N$. Let E be the sub- R-module of L generated by elements of the form

1. $\left(m+m^{\prime}, n\right)-(m, n)-\left(m^{\prime}, n^{\prime}\right)$
2. $\left(m, n+n^{\prime}\right)-(m, n)-\left(m, n^{\prime}\right)$
3. $(r m, n)-r(m, n)$
4. $(m, r n)-r(m, n)$
where $m, m^{\prime} \in M, n, n^{\prime} \in N$ and $r \in R$. We define the tensor product of M and N over R to be

$$
M \otimes_{R} N=L / E
$$

and we write $m \otimes n$ for the equivalence class of (m, n).
Proposition 1.2.14. Let R be a ring and N, M and $P R$-modules. Then

1. If $M \times N \rightarrow P$ is an R-bilinear map then there exists a unique homomorphism of modules $M \otimes_{R} N \rightarrow P$.
2. $R \otimes_{R} M \cong M$.
3. $M \otimes_{R} N=N \otimes_{R} M$.
4. $\left(M \otimes_{R} N\right) \otimes_{R} P \cong M \otimes_{R}\left(N \otimes_{R} P\right)$.
5. $M \otimes_{R}(N \oplus P) \cong\left(M \otimes_{R} N\right) \oplus\left(M \otimes_{R} P\right)$.
6. If $S \subseteq R$ is multiplicatively closed we have $S^{-1} M \cong S^{-1} R \otimes_{R} M$.
7. If $I \triangleleft R$ we have $R / I \otimes_{R} M \cong M / I M$.

Proof. Ommitted.

Remark. Let A, B, C and D be rings and $\alpha: A \rightarrow B, \beta: A \rightarrow C$. Then we have a commutative diagram

where φ sends b to $b \otimes 1$ and ψ sends c to $1 \otimes c$.
Proposition 1.2.15. Let A, B, C and D be rings and suppose we have a commutative diagram

Then there exists a unique homomorphism of A-modules $B \otimes{ }_{A} C \rightarrow D$ extending the diagram to a commutative diagram

1.3 Spectrum of a Ring

Definition 1.3.1. Let R be a ring. We define the spectrum of R, denoted $\operatorname{Spec} R$, to be the set of all prime ideals of R. Moreover, given any ideal $I \triangleleft R$, we define $V(I)=$ $\{\mathfrak{p} \in \operatorname{Spec} R \mid I \subseteq \mathfrak{p}\}$.

Lemma 1.3.2. Let R be a ring. Then

1. For all $I, J \triangleleft R$ we have $V(I J)=V(I \cap J)=V(I) \cup V(J)$.
2. For all families of ideals $I_{\alpha} \triangleleft R$ we have $V\left(\sum_{\alpha} I_{\alpha}\right)=\bigcap_{\alpha} V\left(I_{\alpha}\right)$.
3. For all $I, J \triangleleft R$ we have $V(I) \subseteq V(J)$ if and only if $\sqrt{I} \supseteq \sqrt{J}$.

Proof.
Part 1: We have that

$$
\mathfrak{p} \in V(I J) \Longleftrightarrow I J \subseteq \mathfrak{p} \Longleftrightarrow I \subseteq \mathfrak{p} \text { or } J \subseteq \mathfrak{p} \Longleftrightarrow \mathfrak{p} \in V(I) \text { or } \mathfrak{p} \in V(J)
$$

A similar argument applies to $V(I \cap J)$.
Part 2: We have that

$$
\mathfrak{p} \in V\left(\sum_{\alpha} I_{\alpha}\right) \Longleftrightarrow \sum_{I_{\alpha}} I_{\alpha} \subseteq \mathfrak{p} \Longleftrightarrow I_{\alpha} \subseteq \mathfrak{p} \forall \alpha \Longleftrightarrow \mathfrak{p} \in \bigcap_{\alpha} V\left(I_{\alpha}\right)
$$

Part 3: By Proposition 1.2.4, we have that $\sqrt{I}=\bigcap V(I)$ and $\sqrt{J}=\bigcap V(J)$. The statement then follows immediately.

Definition 1.3.3. Let R be a ring. We define the Zariski topology on $X=\operatorname{Spec} R$ by declaring the closed sets of X to be the $V(I)$. Moreover, we define the structure sheaf of X, denoted by \mathcal{O}_{X}, to be the sheaf of rings

$$
\mathcal{O}_{X}(U)=\left\{s: U \rightarrow \bigcup_{\mathfrak{p} \in U} R_{\mathfrak{p}} \mid \exists \mathfrak{p} \in W \subseteq U \text { open s.t } \forall \mathfrak{q} \in W, s(\mathfrak{q})=\frac{a}{b} \in R_{\mathfrak{q}}\right\}
$$

Proposition 1.3.4. Let R be a ring and $X=\operatorname{Spec} R$. Then \mathcal{O}_{X} is indeed a sheaf.
Proof. \mathcal{O}_{X} is clearly a presheaf with the natural restriction homomorphisms. We just need to check the sheaf condition. To this end, let $U \subseteq X$ be an open set and $U=\bigcup_{i} U_{i}$ be an open cover of U. Suppose that $s_{i} \in \mathcal{O}_{X}\left(U_{i}\right)$ such that $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$ for all i, j. Define a function

$$
\begin{aligned}
s: U & \rightarrow \bigcup_{\mathfrak{p} \in U} R_{\mathfrak{p}} \\
\mathfrak{p} & \mapsto s_{i}(\mathfrak{p})
\end{aligned}
$$

where i is chosen whenever $\mathfrak{p} \in U_{i}$. Then this function is well-defined as the s_{i} agree on overlaps. We claim that s is the desired section in the sheaf condition. It's restriction to U_{i} is clearly just s_{i} so we must have that $s \in \mathcal{O}_{X}(U)$ and that such an s is unique.

Proposition 1.3.5. Let R be a ring and $X=\operatorname{Spec} R$. Then

$$
\{D(b)=X \backslash V((b)) \mid b \in R\}
$$

is a basis for the Zariski Topology on X.
Proof. It suffices to show that the $D(b)$ are open in X and that any given any open set $U \subseteq X$ and a prime $x \in U$, there exists a $b \in R$ such that $x \in D(b) \subseteq U$.

Now, fix $b \in R$, it is immediate that $D(r)$ is open as, by definition, $D(b)=X \backslash V((r))$ and $X \backslash D(b)=V((b))$ is closed.

Next, fix an open neighbourhood $U \subseteq X$ and a prime $\mathfrak{p} \in U$. By definition, $U=X \backslash V(I)$ for some ideal $I \subseteq R$. Moreover, \mathfrak{p} does not contain I. Choose any non-zero element $b \in I$. Then \mathfrak{p} does not contain (b) so that $\mathfrak{p} \notin V((b))$ whence $\mathfrak{p} \in X \backslash V((b))=D(b)$. By construction, $D(b) \subseteq U$ thereby proving the proposition.

Theorem 1.3.6. Let R be a ring and $X=\operatorname{Spec} R$. Then

1. $\left(\mathcal{O}_{X}\right)_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ as local rings for all $\mathfrak{p} \in X$.
2. $\mathcal{O}_{X}(D(b)) \cong R_{b}$ for all $b \in R$.
3. $\mathcal{O}_{X}(X) \cong R$.

Proof.
Part 1: Define a ring homomorphism

$$
\begin{aligned}
f:\left(\mathcal{O}_{X}\right)_{\mathfrak{p}} & \rightarrow R_{\mathfrak{p}} \\
{[U, s] } & \mapsto s(\mathfrak{p})
\end{aligned}
$$

We claim that f is the desired local isomorphism. We must first check that f is welldefined. Suppose that $[U, s]=[V, t]$. Then, by the definition of a stalk, there exists an open neighbourhood $\mathfrak{p} \in W \subseteq U \cap V$ such that $\left.s\right|_{W}=\left.t\right|_{W}$. It then follows that $s(\mathfrak{p})=t(\mathfrak{p})$.

We now show that f is injective. Assume that $f([U, s])=s(\mathfrak{p})=0$. By definition, s is given by some fraction a / b on some open neighbourhood $\mathfrak{p} \in W \subseteq U$. So $s(\mathfrak{p})=0$ implies that there exists some $c \notin \mathfrak{p}$ such that $c a=0$. It then follows that we have $a / b=0$ in all local rings $R_{\mathfrak{q}}$ such that $b, c \notin \mathfrak{q}$. Equivalently, $\mathfrak{q} \in D(b) \cap D(c)$. Then s is 0 on the neighbourhood of \mathfrak{p} given by $D(b) \cap D(c) \cap W$ whence $[U, s]=0$ and f is injective.

We next show that f is surjective. Choose a fraction $a / b \in R_{\mathfrak{p}}$. Let $U=D(b)$ and $s \in \mathcal{O}_{X}(U)$ be given by a / b. Then, clearly, $f([U, s])=a / b$ as desired.

Finally, we must show that this in fact a local isomorphism. It suffices to show that the set

$$
\mathfrak{m}=\left\{[U, s] \mid f([U, s])=s(\mathfrak{p}) \in \mathfrak{p}_{\mathfrak{p}}\right\}
$$

is the unique maximal ideal of $\left(\mathcal{O}_{X}\right)_{\mathfrak{p}}$. Let $I \triangleleft\left(\mathcal{O}_{X}\right)_{\mathfrak{p}}$ be an ideal not contained in \mathfrak{m}. We need to show that all elements of I are invertible. To this end, fix $[U, s] \in\left(\mathcal{O}_{X}\right)_{p}$. Then $f([U, s])=s(\mathfrak{p}) \notin \mathfrak{p}_{\mathfrak{p}}$ and is thus invertible in $R_{\mathfrak{p}}$. Let $s(\mathfrak{p})^{-1}$ denote its inverse in $R_{\mathfrak{p}}$. Then since f is a ring isomorphism, $f^{-1}(s(\mathfrak{p}))$ is an inverse for $[U, s]$ in $\left(\mathcal{O}_{X}\right)_{\mathfrak{p}}$ and we are done.
Part 2: Define a ring homomorphism

$$
\begin{aligned}
g: R_{b} & \rightarrow \mathcal{O}_{X}(D(b)) \\
\frac{a}{b^{n}} & \mapsto\left(\text { sections defined by } \frac{a}{b^{n}}\right)
\end{aligned}
$$

We claim that g is an isomorphism. We first show that it is injective. To this end, suppose that $g\left(a / b^{n}\right)=0$. Then for all $\mathfrak{p} \in D(b), a / b^{n}=0$ in $R_{\mathfrak{p}}$. For such a \mathfrak{p} we have that there exists $c_{\mathfrak{p}} \notin \mathfrak{p}$ such that $c_{\mathfrak{p}} a=0$. Define $I=\left(c_{\mathfrak{p}}\right)_{\mathfrak{p} \in D(b)}$. Then $D(b) \cap V(I)=\varnothing$. Indeed

$$
\mathfrak{p} \in D(b) \Longrightarrow c_{\mathfrak{p}} \notin \mathfrak{p} \Longrightarrow I \nsubseteq \mathfrak{p} \Longrightarrow \mathfrak{p} \notin V(I)
$$

Hence $V(I) \subseteq V((b))$ whence $\sqrt{I} \supseteq \sqrt{(b)}$. By definition of the radical, we thus have $b^{r} \in I$ for some $r \in \mathbb{N}$ so $b^{r}=\sum_{i} d_{i} c_{\mathfrak{p}_{i}}$. Multiplying by a we get

$$
a b^{r}=\sum_{i} d_{i} a c_{\mathfrak{p}_{i}}=0
$$

And so $a / b^{n}=0$ in A_{b}.
We must now show that g is surjective. To this end, choose a section $s \in \mathcal{O}_{X}(D(b))$ and let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of $D(b)$. Suppose that $\left.s\right|_{U_{i}}$ is given by some a_{i} / e_{i}. We may assume that each $U_{i}=D\left(d_{i}\right)$ for some $d_{i} \in R$. From this we observe that $D\left(d_{i}\right) \subseteq D\left(e_{i}\right)$
and so $\sqrt{\left(d_{i}\right)} \subseteq \sqrt{\left(e_{i}\right)}$. By the definition of the radical, we have $d_{i}^{n_{i}}=c_{i} e_{i}$ for some $n_{i} \in \mathbb{N}$ and $c_{i} \in R$. We may replace

$$
\frac{a_{i}}{e_{i}}=\frac{c_{i} a_{i}}{c_{i} e_{i}}=\frac{c_{i} a_{i}}{d_{i}^{n_{i}}}
$$

Noting that $D\left(d_{i}\right)=D\left(d_{i}^{n_{i}}\right)$ for all n_{i}, we may assume that $U_{i}=D\left(e_{i}\right)$. So then $D(b)=$ $\bigcup_{i} D\left(e_{i}\right)$ whence

$$
V((b))=\bigcap_{i} V\left(\left(e_{i}\right)\right)=V\left(\sum_{i}\left(e_{i}\right)\right)
$$

Again applying the radical identity we have $\sqrt{(b)}=\sqrt{\sum\left(e_{i}\right)}$. This implies that $b^{n}=$ $\sum_{\text {finite }} l_{j} e_{j}$ for some $l_{j} \in R$. Going back through the identities, we may then adjust the indexing so we have a finite union

$$
D(b)=\bigcup_{\text {finite }} D\left(e_{i}\right)
$$

Now by hypothesis, a_{i} / e_{i} and a_{k} / e_{k} define the same section on $D\left(e_{i}\right) \cap D\left(e_{j}\right)=D\left(e_{i} e_{k}\right)$. By Part 1, the homomorphism $R_{e_{i} e_{k}} \rightarrow \mathcal{O}_{X}\left(D\left(e_{i} e_{k}\right)\right)$ is injective and so $a_{i} / e_{i}=a_{k} / e_{k}$ in $R_{e_{i} e_{k}}$. By definition of the ring of fractions, there exists an $n^{\prime} \in \mathbb{N}$ such that

$$
\left(e_{i} e_{k}\right)^{n^{\prime}}\left(a_{i} e_{k}-a_{k} e_{i}\right)=e_{k}^{n^{\prime}+1} e_{i}^{n^{\prime}} a_{i}-e_{i}^{n^{\prime}+1} e_{k}^{n^{\prime}} a_{k}=0
$$

for all i, k. By equivalence, we may then assume that $a_{i} e_{k}=a_{k} e_{i}$. From this it follows that

$$
e_{k}\left(\sum_{i} l_{i} a_{i}\right)=\sum_{i} l_{i} a_{i} e_{k}=\sum_{i} l_{i} a_{k} e_{i}=a_{k} \sum_{i} l_{i} e_{i}=a_{k} b^{n}
$$

and so

$$
\frac{a_{k}}{e_{k}}=\sum_{i} \frac{l_{i} a_{i}}{b^{n}}
$$

Hence s is given by $\sum_{i} l_{i} a_{i} / b^{n}$ on $D(b)$ and therefore g is surjective.
Part 3: This follows directly from Part 2 by taking $b=1$.

1.4 Ringed Spaces

Definition 1.4.1. A ringed space is a pair $\left(X, \mathcal{O}_{X}\right)$ where X is a topological space and \mathcal{O}_{X} is a sheaf of rings called the structure sheaf of X. We say that $\left(X, \mathcal{O}_{X}\right)$ is a locally ringed space if $\left(\mathcal{O}_{X}\right)_{\mathfrak{p}}$ are local rings for all $\mathfrak{p} \in X$.

Definition 1.4.2. Let $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ be ringed spaces. A morphism (f, φ) : $\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ consists of

1. a continuous map $f: X \rightarrow Y$.
2. a morphism of sheaves $\varphi: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$.

Furthermore, if $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are locally ringed spaces then φ is a morphism of locally ringed spaces if the induced homomorphism

$$
\begin{aligned}
\left(\mathcal{O}_{Y}\right)_{\mathfrak{q}} & \rightarrow\left(\mathcal{O}_{X}\right)_{\mathfrak{p}} \\
{[V, t] } & \mapsto\left[f^{-1} V, s\right]
\end{aligned}
$$

is a local homomorphism for $\mathfrak{q}=f(\mathfrak{p})$. Finally, an isomorphism of (locally) ringed spaces is a morphism which has an inverse.

Theorem 1.4.3. Let R and S be rings, $\left(X=\operatorname{Spec}(R), \mathcal{O}_{X}\right),\left(Y=\operatorname{Spec}(S), \mathcal{O}_{Y}\right)$ ringed spaces and $\alpha: R \rightarrow S$ a homomorphism of rings. Then

1. $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are locally ringed spaces.
2. α induces a morphism $\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(X, \mathcal{O}_{X}\right)$ of locally ringed spaces.
3. Any morphism of locally ringed spaces $\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(X, \mathcal{O}_{X}\right)$ is induced by some ring homomorphism $\alpha: R \rightarrow S$.

Proof.
Part 1: This follows immediately from Theorem 1.3.6.
Part 2: We first define $f: Y \rightarrow X$ by setting $f(\mathfrak{p})=\alpha^{-1}(\mathfrak{p})$ for $\mathfrak{p} \in Y$. It is easy to see that f is continuous. Indeed, given a closed set $V(I)$, its inverse image under f is simply $V((\alpha I))$ which is again closed.

We now define φ. Recall that given $\mathfrak{p} \in Y$ with $\mathfrak{q}=f(\mathfrak{p})$ we have a local homomorphism

$$
\begin{aligned}
\alpha_{\mathfrak{p}}: R_{\mathfrak{q}} & \rightarrow S_{\mathfrak{p}} \\
\frac{a}{b} & \mapsto \frac{\alpha(a)}{\alpha(b)}
\end{aligned}
$$

Now, choose $s \in \mathcal{O}_{X}(U)$ for some open $U \subseteq X$. Recall that s is a function

$$
s: U \rightarrow \bigcup_{\mathfrak{q} \in U} R_{\mathfrak{q}}
$$

Define a section $t \in \mathcal{O}_{X}\left(f^{-1} U\right)$ by

$$
\begin{aligned}
t: f^{-1} U & \rightarrow \bigcup_{\mathfrak{p} \in f^{-1} U} S_{\mathfrak{p}} \\
\mathfrak{p} & \mapsto \alpha_{\mathfrak{p}}(s(f(\mathfrak{p})))
\end{aligned}
$$

If s is locally given by a / b then t is locally given by $\alpha(a) / \alpha(b)$. This gives a morphism of sheaves

$$
(f, \varphi):\left(Y, \mathcal{O}_{Y}(U)\right) \rightarrow\left(X, \mathcal{O}_{X}(U)\right)
$$

as desired. Now, the homomorphism induced on stalks by φ is simply $\alpha_{\mathfrak{p}}$ and so this is indeed a morphism of locally ringed spaces.

Part 3:
Suppose $(f, \varphi):\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(X, \mathcal{O}_{X}\right)$ is a morphism of locally ringed spaces. By Part 3 of Theorem 1.3.6, applying (f, φ) to the global section X yields a homomorphism of rings $\alpha: R \rightarrow S$. We claim that (f, φ) is induced by α.

To show this, fix $\mathfrak{p} \in Y$ and set $\mathfrak{q}=f(\mathfrak{p})$. Consider the commutative diagram

From this we may read off

$$
\mathfrak{q}=\beta^{-1}\left(\mathfrak{q}_{\mathfrak{q}}\right)=\beta^{-1}\left(\alpha_{\mathfrak{p}}^{-1}\left(\mathfrak{p}_{\mathfrak{p}}\right)\right)=\alpha^{-1}\left(\gamma^{-1}\left(\mathfrak{p}_{\mathfrak{p}}\right)\right)=\alpha^{-1}(\mathfrak{p})
$$

whence $f=\alpha^{-1}$. To see that φ is also induced by α, let $U \subseteq X$ be an open set and $\mathfrak{p} \in U$ with $\mathfrak{q}=f(\mathfrak{p})$. Consider the commutative diagram

Fix a section $s \in \mathcal{O}_{X}(U)$. Then this section is determined by all the values $s(\mathfrak{p}) \in \mathcal{O}_{Y}\left(f^{-1} U\right)$. The commutative diagram then makes it clear that φ is determined by α.

2 Schemes

2.1 Definitions

Definition 2.1.1. Let $\left(X, \mathcal{O}_{X}\right)$ be a locally ringed space. We say that $\left(X, \mathcal{O}_{X}\right)$ is an affine scheme if it isomorphic to $\left(X=\operatorname{Spec}(R), \mathcal{O}_{X}\right)$ for some ring R. We say that $\left(X, \mathcal{O}_{X}\right)$ is a scheme if for all $x \in X$ there exists an open neighbourhood $x \in U \subseteq X$ such that $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$ is an affine scheme. A morphism of schemes $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ is a morphism between them as locally ringed spaces. We denote by $\operatorname{Sch}(X)$ the category of schemes over X and their morphisms.

Remark. Henceforth, by an abuse of notation, an (affine) scheme (X, \mathcal{O}_{X}) will be written simply as X. The stalks $\left(\mathcal{O}_{X}\right)_{x}$ shall be written as $\mathcal{O}_{X, x}$ or simply \mathcal{O}_{x}.

Example 2.1.2. Let K be a field. Then $X=\operatorname{Spec}(K)$ is a scheme consisting of a single point (the only prime ideal of a field is the zero ideal). Furthermore, if L / K is a field extension then $Y=\operatorname{Spec}(L) \rightarrow X=\operatorname{Spec}(K)$ is a morphism of schemes.

Example 2.1.3. Let R be a discrete valuation ring with maximal ideal \mathfrak{m}. Then $\operatorname{Spec}(R)=$ $\{0, \mathfrak{m}\}$. The stalks are given by $\mathcal{O}_{0}=R_{0}=\operatorname{Frac}(R)$ and $\mathcal{O}_{\mathfrak{m}}=R_{\mathfrak{m}}$.

Example 2.1.4. Let $X=\operatorname{Spec}(\mathbb{Z})=\{0,(2),(3),(5), \ldots\}$. The stalk at $x=0$ is simply \mathbb{Q}. If $x=(p)$ for some prime number p then $\mathcal{O}_{x}=\mathbb{Z}_{(p)}$. Note that if \mathfrak{m}_{p} is the maximal ideal of $\mathbb{Z}_{(p)}$ then $\mathbb{Z}_{(p)} / \mathfrak{m}_{p} \cong \mathbb{F}_{p}$.

Furthermore, if R is any ring then the characteristic ring homomorphism

$$
\begin{aligned}
\mathbb{Z} & \rightarrow R \\
n & \mapsto n \cdot 1_{R}
\end{aligned}
$$

induces a morphism of schemes $\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(\mathbb{Z})$.

Definition 2.1.5. Let R be a ring. We define affine \mathbf{n}-space over R, denoted \mathbb{A}_{R}^{n}, to be

$$
\mathbb{A}_{R}^{n}=\operatorname{Spec}\left(R\left[t_{1}, \ldots, t_{n}\right]\right)
$$

Example 2.1.6 (Classical Algebraic Geometry). Let K be an algebraically closed field and $I \triangleleft K\left[t_{1}, \ldots, t_{n}\right]$ an ideal. Since $K\left[t_{1}, \ldots, t_{n}\right]$ is Noetherian, we have that $I=\left(f_{1}, \ldots, f_{r}\right)$ for some $f_{i} \in K\left[t_{1}, \ldots, t_{n}\right]$. Consider the set

$$
S=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in K, f_{j}\left(a_{1}, \ldots, a_{n}\right)=0 \forall j\right\}
$$

Then there exists a one-to-one correspondence between S and the set of maximal ideals in $K\left[t_{1}, \ldots, t_{n}\right]$ containing I (in other words, ideals of the form $\left(t_{1}-a_{1}, \ldots, t_{n}-a_{n}\right)$). classical algebraic geometry studies S whereas modern algebraic geometry studies Spec $K\left[t_{1}, \ldots, t_{n}\right] / I$.

Definition 2.1.7. Let X be a scheme. We say that X is irreducible if for all non-empty open sets $U, V \subseteq X$ we have $U \cap V \neq \varnothing$. Equivalently, if $X=Y \cup Z$ for Y and Z closed then either $X=Y$ or $X=Z$.

Definition 2.1.8. Let R be a ring. We say that R is reduced if $\operatorname{nil}(R)=0$. Furthermore, if X is a scheme, we say that X is reduced if for all open sets $U \subseteq X, \mathcal{O}_{X}(U)$ is reduced.

Definition 2.1.9. Let X be a scheme. We say that X is integral if for all open sets $U \subseteq X$, $\mathcal{O}_{X}(U)$ is an integral domain.

Proposition 2.1.10. Let $X=\operatorname{Spec}(R)$ be an affine scheme for some ring R. Then

1. X is irreducible if and only if $\operatorname{nil}(R)$ is a prime ideal of R.
2. X is reduced if and only if R is reduced.
3. X is irreducible and reduced if and only if R is an integral domain.

Proof.

Part 1: We have that X is irreducible if and only if $X=V(I) \cup V(J)$ implies that $X=V(I)$ or $X=V(J)$. Recall that $V(I) \cup V(J)=V(I J)$ and that $\operatorname{nil}(R)$ is the intersection of all prime ideals in a ring. From this we see that X is irreducible if and only $I J \subseteq \operatorname{nil}(R)$ implies that $I \subseteq \operatorname{nil}(R)$ or $J \subseteq \operatorname{nil}(R)$. But this is exactly what it means for $\operatorname{nil}(R)$ to be prime.
Part 2: The forward direction is just by definition so assume that R is reduced. Let $s \in \mathcal{O}_{X}(U)$ be nilpotent. Then for all $x \in U$, the image of s in $\mathcal{O}_{x}=R_{x}$ is nilpotent. By hypothesis, R_{x} is reduced so $s=0$ in R_{x} for all $x \in U$. Since \mathcal{O}_{X} is a sheaf, it follows that $s=0$ in $\mathcal{O}_{X}(U)$ whence $\mathcal{O}_{X}(U)$ is reduced.
Part 3: We have that X is irreducible and reduced if and only if $\operatorname{nil}(R)$ is prime and $\operatorname{nil}(R)=0$. But this is equivalent to R being and integral domain.

Theorem 2.1.11. Let X be a scheme. Then X is integral if and only if is irreducible and reduced.

Proof. First suppose that X is integral. Then clearly X is reduced. Now assume that there exists open sets $U, V \subseteq X$ such that $U \cap V=\varnothing$. Then $\mathcal{O}_{X}(U \cup V)=\mathcal{O}_{X}(U) \oplus \mathcal{O}_{X}(V)$ since \mathcal{O}_{X} is a sheaf. But the direct sum of two non-zero rings can never be an integral domain which is a contradiction.

Conversely, suppose that X is irreducible and reduced. We first claim that for all open sets $U \subseteq X$ and $x \in U$, there exists an open affine neighbourhood $x \in W \subseteq U$.

By the definition of a scheme, there exists an open affine $V=\operatorname{Spec}(R) \subseteq X$ such that $x \in V$. Then there exists $b \in R$ such that $x \in D(b) \subseteq U \cap V$. Now, as schemes, we have that $D(b) \cong \operatorname{Spec}\left(R_{b}\right)$ so the claim is proved.

Now suppose that $s, t \in \mathcal{O}_{X}(U)$ such that $s t=0$ with $s \neq 0$. We need to show that $t=0$. By the claim, we can cover U by open affine sets $U=\bigcup V_{i}$ where $V_{i}=\operatorname{Spec}\left(R_{i}\right)$ for some ring R_{i}. Then for some $i,\left.s\right|_{V_{i}} \neq 0$. Since X is irreducible and reduced, so is V_{i}. Proposition 2.1.10 then implies that R_{i} is an integral domain and so

$$
\left.s t\right|_{V_{i}}=\left.\left.s\right|_{V_{i}} \cdot t\right|_{V_{i}}=0
$$

implies that $\left.t\right|_{V_{i}}=0$. We claim that in fact $\left.t\right|_{V_{j}}=0$ for all j.
Now, X is irreducible whence $V_{i} \cap V_{j} \neq \varnothing$ for all j. Since $\left.t\right|_{V_{i} \cap V_{j}}=0$, we must then have that $t=0$ in \mathcal{O}_{x} for all $x \in V_{i} \cap V_{j}$. Note that $\mathcal{O}_{x} \cong\left(R_{j}\right)_{x}$ and the natural inclusion

$$
\begin{aligned}
R_{j} & \rightarrow\left(R_{j}\right)_{x} \\
a & \mapsto \frac{a}{1}
\end{aligned}
$$

is injective. Since the image of $\left.t\right|_{V_{j}}$ is 0 under this map, it follows that $\left.t\right|_{V_{j}}=0$ for all j. But \mathcal{O}_{U} is a sheaf whence $t=0$. Hence $\mathcal{O}_{X}(U)$ is an integral domain and X is integral.

Definition 2.1.12. Let X be a scheme. We say that $\eta \in X$ is generic if $\overline{\{\eta\}}=X$.
Proposition 2.1.13. Let X be an integral scheme. Then X has a unique generic point.
Proof. Let U be any affine open set $U=\operatorname{Spec}(R)$ for some ring R. We claim that $\eta=0 \triangleleft R$ is a generic point of U. Let $I \triangleleft R$ be an ideal. Then $V(I)$ clearly never contains the zero ideal unless $I=0$. Since $V(0)=\operatorname{Spec}(R)$, it follows that every non-empty open subset of U contains η which is exactly what it means for η to be dense in U. Now suppose that η^{\prime} is any other generic point of U. Then, by definition, $\eta^{\prime} \in V$ for all non-empty open subsets of U. Then the only I such that $\eta^{\prime} \in V(I)$ is $I=0$. Hence η^{\prime} is a minimal prime ideal of R. Since X is integral, so is U when viewed as a scheme whence R is an integral domain. Since 0 is the unique minimal prime ideal of an integral domain, we must have that $\eta^{\prime}=0=\eta$ and so U has a unique generic point.

Now, X is integral and, in particular, it is irreducible. This is equivalent to every nonempty open subset of X being dense in X. Since $\eta=0$ is dense in all non-empty open subsets U when viewed as a scheme, η is thus also dense in X and we are done.

Proposition 2.1.14. Let X be an integral scheme and η its unique generic point. Then \mathcal{O}_{η} is a field called the function field of X and denoted $K(X)$.

Proof. Let $U \subseteq X$ be any affine open set where $U=\operatorname{Spec}(R)$. Then $\mathcal{O}_{\eta}=\left(\mathcal{O}_{X}\right)_{\eta}=\left(\mathcal{O}_{U}\right)_{\eta}=$ $R_{(0)}=\operatorname{Frac}(R)$.

Definition 2.1.15. Let X and Y be schemes and $f: Y \rightarrow X$ a morphism. We say that f is an open immersion if $U:=f(Y)$ is open in X and f induces an isomorphism of locally ringed spaces $\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$. An open subscheme of X is any open immersion of some scheme Y to X.

Definition 2.1.16. Let X and Z be schemes. A closed immersion is a morphism of schemes $g: Z \rightarrow X$ such that

1. $g(Z)$ is closed in X.
2. g induces a homeomorphism $Z \rightarrow g(Z)$.
3. $\mathcal{O}_{X} \rightarrow g_{*} \mathcal{O}_{Z}$ is a surjection.

A closed subscheme of X is any closed immersion from some scheme Z into X up to the following equivalence relation. Two closed immersions $g: Z \rightarrow X$ and $g^{\prime}: Z^{\prime} \rightarrow X$ define the same closed subscheme if there exists an isomorphism $h: Z \rightarrow Z^{\prime}$ such that the diagram

commutes.
Example 2.1.17. Let $X=\operatorname{Spec}(R)$ for some ring R and $I \triangleleft R$ an ideal. Then $R \rightarrow R / I$ gives a closed immersion $\operatorname{Spec}(R / I) \rightarrow \operatorname{Spec}(R)$.

2.2 Schemes Associated to Graded Rings

Definition 2.2.1. Let S be a ring. We say that S is graded if there exist a collection of rings $\left\{S_{d}\right\}_{d \in \mathbb{N}}$ such that $S=\bigoplus_{d \in \mathbb{N}} S_{d}$ and $S_{d} S_{c} \subseteq S_{d+c}$. If $s_{d} \in S_{d}$ then we say that s_{d} is homogeneous of degree d.

Example 2.2.2. $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$ is a graded ring.
Definition 2.2.3. Let $S=\bigoplus_{d \in \mathbb{N}} S_{n}$ be a graded ring and $I \triangleleft S$ an ideal. We say that I is a homogeneous ideal if

$$
I=\bigoplus_{d \in \mathbb{N}} I \cap S_{d}
$$

Proposition 2.2.4. Let $S=\bigoplus_{d \in \mathbb{N}}$ be a graded ring and $I, J \triangleleft S$ homogeneous ideals. Then $I+J, I J, I \cap J$ and \sqrt{I} are all homogeneous ideals.

Proof. We have that

$$
I+J=\left(\bigoplus_{d \in \mathbb{N}} I \cap S_{d}\right)+\left(\bigoplus_{d \in \mathbb{N}} J \cap S_{d}\right)=\bigoplus_{d \in \mathbb{N}}(I+J) \cap S_{d}
$$

A similar argument shows that $I J$ and $I \cap J$ are also homogeneous ideals.
To show that \sqrt{I} is homogeneous, choose $s \in \sqrt{I}$. Then $s^{n} \in I$ for some $n \in \mathbb{N}$. Without loss of generality, we may suppose that s^{n} is homogeneous of degree d with $s^{n} \in I_{d}$. Since I is homogeneous, we must have that $s \in I_{d / n}$. The elements of \sqrt{I} are thus homogeneous and we are done.

Proposition 2.2.5. Let $S=\bigoplus_{d \in \mathbb{N}} S_{d}$ be a graded ring and $\mathfrak{p} \triangleleft S$ a homogeneous ideal. If for all homogeneous ideals $I, J \triangleleft S$ we have that $I J \subseteq \mathfrak{p}$ implies $I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p}$ then \mathfrak{p} is prime.

Proof. Let a and b be elements (not necessarily homogeneous) such that $a b \in \mathfrak{p}$. Suppose that neither a nor b is in \mathfrak{p}. Let $a=\sum_{i} a_{i}$ and $b=\sum_{j} b_{j}$ be their homogeneous expansions. Since $a \notin \mathfrak{p}$ and the terms in the expansion are eventually 0 , there exists a maximum d such that $a_{d} \notin \mathfrak{p}$. Similarly, there exists a maximum e such that $b_{e} \notin \mathfrak{p}$.

Since $a b \in \mathfrak{p}$, all of its components are as well. The $(d+e)^{t h}$ component of $a b$ is given by $\sum_{i+j=d+e} a_{i} b_{j}$. Each pair (i, j) except (d, e) must satisfy either $i>d$ or $j>e$. The maximality of d and e then imply that each $a_{i} b_{j} \in \mathfrak{p}$. This then implies that $a_{i} b_{j} \in \mathfrak{p}$. By hypothesis, either a_{i} or b_{j} is in \mathfrak{p} which is a contradiction.

Definition 2.2.6. Let S be a graded ring and $\mathfrak{p} \triangleleft S$ a homogeneous prime ideal. We define the homogeneous localisation of S at \mathfrak{p} by

$$
S_{(\mathfrak{p})}=\left\{\left.\frac{a}{b} \in S_{\mathfrak{p}} \right\rvert\, a, b \text { are homogeneous and have the same degree }\right\}
$$

Similarly, given a homogeneous element of non-zero degree $b \in S$ we define

$$
S_{(b)}=\left\{\left.\frac{a}{b^{r}} \in S_{b} \right\rvert\, a, b^{r} \text { are homogeneous and have the same degree }\right\}
$$

Definition 2.2.7. Let $S=\bigoplus_{d \in \mathbb{N}} S_{d}$ be a graded ring and $S_{+}=\bigoplus_{d>0} S_{d}$. We define the homogeneous spectrum of S to be the set

$$
\operatorname{Proj}(S)=\left\{\mathfrak{p} \triangleleft S \mid \mathfrak{p} \text { is homogeneous and } S_{+} \nsubseteq \mathfrak{p}\right\}
$$

Furthermore, for all $I \triangleleft S$, define

$$
V_{+}(S)=\{\mathfrak{p} \in \operatorname{Proj}(S) \mid I \subseteq \mathfrak{p}\}
$$

Lemma 2.2.8. Let S be a graded ring. Then

1. For all homogeneous ideals $I, J \triangleleft S$ we have $V_{+}(I J)=V_{+}(I \cap J)=V_{+}(I) \cup V_{+}(J)$.
2. For any family of homogeneous ideals I_{α} of S we have $V_{+}\left(\sum_{\alpha} I_{\alpha}\right)=\cap_{\alpha} V_{+}\left(I_{\alpha}\right)$.

Proof. Follows a similar argument to the affine case.
Definition 2.2.9. Let S be a graded ring. We can define a topology on $X=\operatorname{Proj}(S)$ called the Zariski topology by taking the closed sets to be the $V_{+}(I)$ for all $I \triangleleft S$. Moreover, we define the structure sheaf of X, denoted \mathcal{O}_{X} to be the sheaf of rings

$$
\mathcal{O}_{X}(U)=\left\{s: U \rightarrow \bigcup_{\mathfrak{p} \in U} S_{(\mathfrak{p})} \left\lvert\, \begin{array}{c}
\forall \mathfrak{p} \in U, s(\mathfrak{p}) \in S_{(\mathfrak{p})} \\
\exists \text { open } \mathfrak{p} \in W \subseteq U \text { such that } \forall \mathfrak{q} \in W \\
s(\mathfrak{q})=\frac{a}{b} \in S_{(\mathfrak{q})} \text { where } a, b \in S \text { are homogeneous of the same degree }
\end{array}\right.\right\}
$$

Proposition 2.2.10. Let S be a graded ring and $X=\operatorname{Proj}(S)$. Then

$$
\left\{D_{+}(b)=X \backslash V_{+}((b)) \mid b \in S \text { homogeneous }\right\}
$$

is a basis for the Zariski topology on X.
Proof. This is proven in a similar way to the affine case.
Theorem 2.2.11. Let $S=\bigoplus_{d \in \mathbb{N}} S_{d}$ be a graded ring and $X=\operatorname{Proj}(S)$. Then

1. $\left(\mathcal{O}_{X}\right)_{\mathfrak{p}} \cong S_{(\mathfrak{p})}$ for all $\mathfrak{p} \in X$.
2. For all homogeneous $b \in S_{+}$there exists a natural isomorphism of locally ringed spaces between $D_{+}(b)$ and $\operatorname{Spec}\left(S_{(b)}\right)$.
3. $\left(X, \mathcal{O}_{X}\right)$ is a scheme.

Proof.
Part 1: Similar argument to the affine case.
Part 2: First denote $U_{b}:=D_{+}(b)$ and $Y:=\operatorname{Spec}\left(S_{(b)}\right)$. We shall construct an isomorphism of locally ringed spaces

$$
(f, \varphi):\left(U_{b},\left.\mathcal{O}_{X}\right|_{U_{b}}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)
$$

Note that we have natural homomorphisms of rings $S \rightarrow S_{b}$ and $S_{(b)} \hookrightarrow S_{b}$. We use these to define f as follows:

$$
\begin{aligned}
f: U_{b} & \rightarrow Y \\
\mathfrak{p} & \mapsto \mathfrak{p}_{b} \cap S_{(b)}
\end{aligned}
$$

We first show that f is injective. Suppose that $f(\mathfrak{p})=f(\mathfrak{q})$ for some $\mathfrak{p}, \mathfrak{q} \in U_{b}$. We need to show that $\mathfrak{p}=\mathfrak{q}$. To this end, fix $x \in \mathfrak{p}$. Let $x=\sum_{i} x_{i}$ be its homogeneous expansion. Since \mathfrak{q} is homogeneous, it suffices to show that each $x_{i} \in \mathfrak{q}$. By hypothesis, we have that

$$
\mathfrak{p}_{b} \cap S_{(b)}=\mathfrak{q}_{b} \cap S_{(b)}
$$

Now, we can always find $n, r \in \mathbb{N}$ such that $\operatorname{deg}\left(x_{i}^{n}\right)=\operatorname{deg}\left(b^{r}\right)$ so for such n and r, we have that $x_{i}^{n} / b^{r} \in \mathfrak{p}_{b} \cap S_{(b)}$. But then $x_{i}^{n} / b^{r} \in \mathfrak{q}_{b} \cap S_{(b)}$. This means that $x_{i}^{n} \in \mathfrak{q}$. Since \mathfrak{q} is prime, we thus have that $x_{i} \in \mathfrak{q}$ and so $\mathfrak{p} \subseteq \mathfrak{q}$. A similar argument gives us the reverse inclusion whence f is injective.

We next show that f is surjective. Fix $\mathfrak{q} \in Y=\operatorname{Spec}\left(S_{(b)}\right)$. We need to exhibit $\mathfrak{p} \in U_{b}=D_{+}(b)$ such that $f(\mathfrak{p})=\mathfrak{q}$. Define

$$
I_{m}=\left\{a \in S_{m} \left\lvert\, \frac{a^{\operatorname{deg}(b)}}{b^{m}} \in \mathfrak{q}\right.\right\}
$$

We claim that $I=\bigoplus_{m \in \mathbb{N}} I_{m}$ is the desired element of U_{b}. We first show that I is an ideal. Let $r, s \in I_{m}$. Then clearly,

$$
\frac{(r+s)^{2 \operatorname{deg}(b)}}{b^{2 m}} \in \mathfrak{q}
$$

Since \mathfrak{q} is prime, it then follows that

$$
\frac{(r+s)^{\operatorname{deg}(b)}}{b^{m}} \in \mathfrak{q}
$$

And so I_{m} is an abelian group. It then follows immediately that I is a homogeneous ideal. To see that it is a prime ideal, suppose that $r s \in I$ for some homogeneous elements $r, s \in S$. Then

$$
\frac{(r s)^{\operatorname{deg}(b)}}{b^{\operatorname{deg}(r s)}}=\frac{r^{\operatorname{deg}(b)} s^{\operatorname{deg} b}}{b^{\operatorname{deg}(r)} b^{\operatorname{deg}(s)}}=\frac{r^{\operatorname{deg}(b)}}{b^{\operatorname{deg}(r)}} \cdot \frac{s^{\operatorname{deg}(b)}}{b^{\operatorname{deg}(s)}}
$$

From this we see that either $r \in I$ or $s \in I$ so I is prime. Now clearly, $b \notin I$ so, indeed, $I \in D_{+}(b)$. It then follows immediately that $f(I)=\mathfrak{q}$ thereby proving that f is bijective.

We now show that f is a homeomorphism. Note that $D_{+}(b) \cap V_{+}(I)$ for homogeneous ideals $I \triangleleft S$ are the closed sets of $D_{+}(b)$. Then

$$
f\left(D_{+}(b) \cap V_{+}(I)\right)=V\left(I_{b} \cap S_{(b)}\right)
$$

The other direction is also clear so f is a homeomorphism.
We next show that there exists an isomorphism $\varphi: \mathcal{O}_{U_{b}}(U) \rightarrow \mathcal{O}_{Y}(f(U))$ for all open sets $U \subseteq U_{b}$. Observe that by Part 1 , we have isomorphisms

$$
\left(\mathcal{O}_{X}\right)_{\mathfrak{p}} \cong S_{(\mathfrak{p})} \cong\left(S_{(b)}\right)_{f(\mathfrak{p})} \cong\left(\mathcal{O}_{Y}\right)_{f(\mathfrak{p})}
$$

where the middle isomorphism is given by

$$
\frac{a}{c} \mapsto \frac{a}{1} / \frac{c}{1}
$$

This then induces an isomorphism on the level of sections and we are done.
Part 3: This follows from Part 1 and Part 2. Note that the condition $S_{+} \nsubseteq \mathfrak{p}$ ensures that the open sets $D_{+}(b)$ cover $X=\operatorname{Proj}(S)$.

Example 2.2.12. Let R be a ring and $S=R\left[t_{0}, \ldots, t_{n}\right]$. Then S is a graded ring with homogeneous components S_{d} consisting of all homogeneous polynomials of degree d. We define n-projective space over R to be

$$
\mathbb{P}_{R}^{n}=\operatorname{Proj}(S)
$$

The open sets $D_{+}\left(t_{0}\right), \ldots, D_{+}\left(t_{n}\right)$ cover \mathbb{P}_{R}^{n}. By the above Theorem, we have that

$$
D_{+}\left(t_{i}\right) \cong \operatorname{Spec}\left(S_{\left(t_{i}\right)}\right) \cong R\left[\frac{t_{0}}{t_{i}}, \ldots, \frac{t_{n}}{t_{i}}\right] \cong \operatorname{Spec}\left(\mathbb{A}_{R}^{n}\right)
$$

2.3 Fibred Products

Proposition 2.3.1. Let X be a topological space. Then $\operatorname{Sch}(X)$ has pullbacks (fibred products). In other words, given a commutative diagram

of schemes over X, there exists a unique scheme, denoted $W \times_{S} Y$ such that we have a commutative diagram

and a unique morphism of schemes $Z \rightarrow W X_{S} Y$. Categorically, $W \times_{S} Y$ is universal amongst all schemes Z that complete the above diagram to a commutative diagram.

Proof. First suppose that all schemes involved are affine so that $S=\operatorname{Spec}(A), W=\operatorname{Spec}(B)$ and $Y=\operatorname{Spec}(C)$ for some rings A, B and C. Let $Z=\operatorname{Spec}(D)$ for some ring D. A commutative diagram

yields a commutative diagram of rings

by reversing the direction of the arrows. By the universal property of tensor products, there exists a unique homomorphism of A-modules $B \otimes_{A} C \rightarrow D$ such that the diagram

commutes. Define $X \times_{S} Y=\operatorname{Spec}\left(B \otimes_{A} C\right)$. Then we get a commutative diagram

as desired. The proof of the general case is omitted.
Definition 2.3.2. Let X and Y be schemes and $f: X \rightarrow Y$ be morphisms. Given $y \in Y$, let \mathfrak{m}_{y} be the maximal ideal of \mathcal{O}_{y} and $k(y)=\mathcal{O}_{y} / \mathfrak{m}_{y}$ the residue field of y in Y. We define the fibre of f over y to be

$$
X_{y}=\operatorname{Spec}(k(y)) \times_{Y} X
$$

Furthermore, if Y is integral and η is the generic point of Y then we say that X_{η} is a generic fibre of f.

Example 2.3.3. Let $R=\mathbb{C}\left[t_{1}, t_{2}, t_{3}\right] /\left(t_{2} t_{3}-t_{1}\right)$ and $X=\operatorname{Spec}(R)$. The homomorphism of rings

$$
\begin{aligned}
\mathbb{C}[u] & \rightarrow R \\
u & \mapsto\left[t_{3}\right]
\end{aligned}
$$

induces a morphism of schemes $X \rightarrow Y=\operatorname{Spec}(\mathbb{C}[u])=\mathbb{A}_{\mathbb{C}}^{1}$. Let $y=(u-a) \triangleleft \mathbb{C}[u]$. We have that

$$
k(y)=\mathcal{O}_{y} / \mathfrak{m}_{y} \cong \frac{\mathbb{C}[u]_{(u-a)}}{(u-a)_{(u-a)}} \cong \mathbb{C}[u]_{(u-a)} \cong \mathbb{C}
$$

The fibre X_{y} is given by

$$
\begin{aligned}
X_{y} & =\operatorname{Spec}\left(\frac{\mathbb{C}[u]}{(u-a)} \otimes_{\mathbb{C}[u]} R\right) \\
& \cong \operatorname{Spec}\left(\frac{R}{(u-a) R}\right) \\
& \cong \frac{\mathbb{C}\left[t_{1}, t_{2}\right]}{\left(a t_{2}-t_{1}^{2}\right)}
\end{aligned}
$$

In particular, if $a=0, X_{y}=\operatorname{Spec}\left(\frac{\mathbb{C}\left[t_{1}, t_{2}\right]}{\left(t_{1}^{2}\right)}\right)$ which is not reduced.

$2.4 \mathcal{O}_{X}$-modules

Definition 2.4.1. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and \mathcal{F} a sheaf of modules. We say that \mathcal{F} is an $\mathcal{O}_{\boldsymbol{X}}$-module if for all open sets $U \subseteq X, \mathcal{F}(U)$ is an $\mathcal{O}_{X}(U)$-module and for all inclusions of open sets $V \subseteq U$ and $s \in \mathcal{O}_{X}(U), m \in \mathcal{F}(U)$ we have $\left.(s m)\right|_{V}=\left.\left.s\right|_{V} \cdot m\right|_{V}$.

Definition 2.4.2. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and \mathcal{F}, \mathcal{G} be \mathcal{O}_{X}-modules. A morphism of \mathcal{O}_{X}-modules $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of sheaves such that for all open sets $U \subseteq$ $X, \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ is a homomorphism of $\mathcal{O}_{X}(U)$-modules.

Remark.

- If $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of \mathcal{O}_{X}-modules then $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$ are \mathcal{O}_{X}-modules.
- If \mathcal{F}_{i} is a family of \mathcal{O}_{X}-modules then $\bigoplus_{i} \mathcal{F}_{i}$ is an \mathcal{O}_{X}-module defined to be the sheafification of the presheaf given by $\bigoplus \mathcal{F}_{i}(U)$.
- If \mathcal{F} and \mathcal{G} are \mathcal{O}_{X}-modules then $\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{G}$ is an \mathcal{O}_{X}-module defined to be the sheafification of the presheaf given by $\mathcal{F}(U) \otimes_{\mathcal{O}_{X}(U)} \mathcal{G}(U)$.
- If $f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a morphism of ringed spaces and \mathcal{F} is an \mathcal{O}_{X}-module then $f_{*} \mathcal{F}$ is an \mathcal{O}_{Y}-module.

Definition 2.4.3. Let $X=\operatorname{Spec}(R)$ be an affine scheme and M an R-module. We define the \mathcal{O}_{X}-module \widetilde{M} by

$$
\widetilde{M}(U)=\left\{\begin{array}{l|c}
s: U \rightarrow \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} & \begin{array}{c}
\forall \mathfrak{p} \in U, s(\mathfrak{p}) \in M_{\mathfrak{p}} \\
\exists \text { open } \mathfrak{p} \in W \subseteq U \text { such that } \forall \mathfrak{q} \in W \\
s(\mathfrak{q})=\frac{m}{a} \in M_{\mathfrak{q}} \text { where } m \in M, a \in R
\end{array}
\end{array}\right\}
$$

Theorem 2.4.4. Let $X=\operatorname{Spec}(R)$ be an affine scheme and M an R-module. Then

1. \widetilde{M} is indeed an \mathcal{O}_{X}-module.
2. $(\widetilde{M})_{\mathfrak{p}} \cong M_{\mathfrak{p}}$ for all $\mathfrak{p} \in X$.
3. $\widetilde{M}(D(b)) \cong M_{b}$.
4. $\widetilde{M}(X) \cong M$.

Proof. All proved in the same way as for the case where $M=R$.
Remark. Let $X=\operatorname{Spec}(R)$. If $M \rightarrow N$ is a homomorphism of R-modules then we get a morphism of \mathcal{O}_{X}-modules $\widetilde{M} \rightarrow \widetilde{N}$. So if

$$
0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0
$$

is a complex of R-modules we then have a complex of sheaves

$$
0 \longrightarrow \widetilde{K} \longrightarrow \widetilde{M} \longrightarrow \widetilde{N} \longrightarrow 0
$$

Where the first complex is exact if and only if the second complex is exact. Indeed, the complex of R-modules is exact if and only if

$$
0 \longrightarrow K_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}} \longrightarrow 0
$$

is exact for all $\mathfrak{p} \in X$. This is exact if and only if

$$
0 \longrightarrow \widetilde{K}_{\mathfrak{p}} \longrightarrow \widetilde{M}_{\mathfrak{p}} \longrightarrow \widetilde{N}_{\mathfrak{p}} \longrightarrow 0
$$

is exact for all $\mathfrak{p} \in X$. This is exact if and only if the original complex of sheaves is exact.
Definition 2.4.5. Let $f: X \rightarrow Y$ be a map of topological spaces and \mathcal{G} a sheaf on Y. We define the inverse image of \mathcal{G} under f, denoted $f^{-1} \mathcal{G}$, to be the sheafification of the presheaf given by

$$
U \mapsto \lim _{V \supseteq F(U)} \mathcal{G}(V)
$$

where $U \subseteq X$ is open.
Remark. Elements of the direct limit can be represented by equivalence classes of pairs $[V, t]$ where $f(U) \subseteq V$ and $t \in \mathcal{G}(V)$ and the equivalence relation is given by $(V, t) \sim\left(V^{\prime}, t\right)$ if and only if there exists an open $f(U) \subseteq W \subseteq V \cap V^{\prime}$ such that $\left.t\right|_{W}=\left.t^{\prime}\right|_{W}$.

Definition 2.4.6. Let $f: X \rightarrow Y$ be a morphism of ringed spaces and \mathcal{G} an \mathcal{O}_{Y}-module. We define the pullback of \mathcal{G} under f, denoted $f^{*} \mathcal{G}$, to be

$$
f^{*} \mathcal{G}=\mathcal{O}_{X} \otimes_{f^{-1} \mathcal{O}_{Y}} f^{-1} \mathcal{G}
$$

Theorem 2.4.7. Let $\alpha: R \rightarrow S$ be a ring homomorphism and $f: X=\operatorname{Spec}(S) \rightarrow Y=$ $\operatorname{Spec}(R)$ the induced morphism of schemes.

1. If M and N are R-modules then

$$
\widetilde{M} \otimes_{\mathcal{O}_{Y}} \widetilde{N} \cong \widehat{M \otimes_{R} N}
$$

2. If $\left\{M_{i}\right\}$ is a family of R-modules then

$$
\bigoplus \widetilde{M}_{i}=\widetilde{\bigoplus M_{i}}
$$

3. If L is an S-module then $f_{*} \widetilde{L} \cong \widetilde{{ }_{R} L}$ where ${ }_{R} L$ is L considered as an R-module via α. 4. If M is an R-module then $f^{*} \widetilde{M} \cong \widehat{S \otimes_{R} M}$.

Proof. We give the proof of Part 1. Part 2 is analogous and the others are omitted.
Let \mathcal{F} be the presheaf given by $\mathcal{F}(U)=\widetilde{M}(U) \otimes_{\mathcal{O}_{Y}(U)} \widetilde{N}(U)$. We shall construct an isomorphism of sheaves $\varphi: \mathcal{F} \rightarrow \widehat{M \otimes_{R} N}$. Fix an open subset $U \subseteq X$ and choose $s \in \widetilde{M}(U)$ and $t \in \widetilde{N}(U)$. Define

$$
\begin{aligned}
r: U & \rightarrow \bigcup_{\mathfrak{p} \in U}\left(M \otimes_{R} N\right)_{\mathfrak{p}}=\bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \otimes_{R} N_{\mathfrak{p}} \\
\mathfrak{p} & \mapsto s(\mathfrak{p}) \otimes t(\mathfrak{p})
\end{aligned}
$$

If s is locally given by m / a and t is locally given by n / b then r is locally given by $(m \otimes n) / a b$. Now, the mapping $(s, t) \rightarrow r$ is bilinear and hence induces a homomorphism of R-modules

$$
\varphi_{U}: \mathcal{F}(U) \rightarrow \overline{M \otimes_{R} N}(U)
$$

This then induces a morphism of presheaves $\varphi: \mathcal{F} \rightarrow \overline{M \otimes_{R} N}$ which in turn gives rise to a morphism of sheaves $\varphi^{+}: \mathcal{F}^{+} \rightarrow \overline{M \otimes_{R} N}$.

Given $\mathfrak{p} \in X$, we have that

$$
\varphi_{\mathfrak{p}}^{+}=\varphi_{\mathfrak{p}}: \mathcal{F}_{\mathfrak{p}}=M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N_{\mathfrak{p}} \rightarrow \overline{M \otimes_{R} N_{\mathfrak{p}}}=\left(M \otimes_{R} N\right)_{\mathfrak{p}}
$$

is an isomorphism at the level of stalks. This then implies that φ is an isomorphism and we are done.

2.5 Quasi-coherent sheaves

Definition 2.5.1. Let X be a scheme and \mathcal{F} an \mathcal{O}_{X}-module. We say that \mathcal{F} is quasicoherent if for all open affine $U=\operatorname{Spec}(R) \subseteq X,\left.\mathcal{F}\right|_{U}=\widetilde{M}$ for some R-module M. Furthermore, we say that \mathcal{F} is coherent if M can be chosen to be finitely generated over R.

Example 2.5.2. Let X be a scheme. Then \mathcal{O}_{X} is coherent. Indeed, for all open affine sets $U=\operatorname{Spec}(R)$ we have $\left.\mathcal{O}_{X}\right|_{U}=\widetilde{R}$.
Example 2.5.3. Let R be a discrete valuation ring and set $X=\operatorname{Spec}(R)=\{0, \mathfrak{m}\}$. Define an \mathcal{O}_{X}-module \mathcal{G} of X by setting $\mathcal{F}(\{0\})=\operatorname{Frac}(R)$ and $\mathcal{F}(X)=0$. Then \mathcal{G} is not quasi-coherent. Indeed, if $U \subseteq X$ is open affine containing \mathfrak{m} then $U=X$. If \mathcal{G} were to be quasi-coherent, we would have that $\mathcal{G}=\widetilde{M}$ for some R-module M. But then $M=\mathcal{F}(X)=0$ which is a contradiction.

Lemma 2.5.4. Let $X=\operatorname{Spec}(R)$ be an affine scheme and \mathcal{F} an \mathcal{O}_{X}-module. Let $M=$ $\mathcal{F}(X)$. Then there exists a natural morphism of \mathcal{O}_{X}-modules $f: \widetilde{M} \rightarrow \mathcal{F}$.
Proof. For all $a \in R$, define a homomorphism

$$
\begin{aligned}
M_{a} & \rightarrow \mathcal{F}(D(a)) \\
\frac{m}{a^{r}} & \left.\rightarrow \frac{1}{a^{r}} \cdot m\right|_{D(a)}
\end{aligned}
$$

This induces a morphism of \mathcal{O}_{X}-modules $\widetilde{M} \rightarrow \mathcal{F}$. Now, each open set $U \subseteq X$ is covered by open sets of the form $D\left(a_{i}\right)$. For each section $s \in \widetilde{M}(U)$, consider images of $\left.s\right|_{D\left(a_{i}\right)}$ and glue them together to get a section in $\mathcal{F}(U)$ and call it image of s.

Corollary 2.5.5. Let $X=\operatorname{Spec}(R)$ be an affine scheme and M an R-module. If $a \in R$ then

$$
\left.\widetilde{M}\right|_{D(a)} \cong \widetilde{M}_{a}
$$

as \mathcal{O}_{X}-modules.
Proof. By Lemma 2.5.4, we have a morphism of \mathcal{O}_{X}-modules

$$
\varphi:\left.\widetilde{M}_{a} \rightarrow \widetilde{M}\right|_{D(a)}
$$

Now, for all $\mathfrak{p} \in D(a)$ we have that $\left.\varphi_{\mathfrak{k}}:(\widetilde{M})_{a}\right)_{\mathfrak{p}} \rightarrow\left(\left.\widetilde{M}\right|_{D(a)}\right)_{\mathfrak{p}}$ is an isomorphism. This implies that φ itself is an isomorphism.

Definition 2.5.6. Let X be a scheme. We say that X is Noetherian if X can be covered by finitely many open affine subschemes U_{1}, \ldots, U_{r} such that for all $i, U_{i}=\operatorname{Spec}\left(R_{i}\right)$ for some Noetherian R_{i}.

Theorem 2.5.7. Let X be a scheme and \mathcal{F} a quasi-coherent \mathcal{O}_{X}-module. If $U=\operatorname{Spec}(R) \subseteq$ X is open affine then $\left.\mathcal{F}\right|_{U} \cong \widetilde{M}$ for some R-module M. Furthermore, if X is Noetherian and \mathcal{F} is coherent, M can be chosen to be finitely generated.

Proof. Fix an open affine set $U=\operatorname{Spec}(R) \subseteq X$. By definition, for all $x \in U$, there exists an open affine neighbourhood of $X, V=\operatorname{Spec}(B)$ such that $\left.\mathcal{F}\right|_{V} \cong \widetilde{N}$ for some B-module N. We can always find a $b \in B$ such that $x \in D_{V}(b)$ where $D_{V}(b)$ is understood as taking the open set $D(b)$ with respect to V. By the previous corollary, we have that $\left.\mathcal{F}\right|_{D(b)} \cong \widetilde{N_{b}}$ so we may assume that $V \subseteq U$. This allows us to replace X with U and so we can just suppose that $X=\operatorname{Spec}(R)$ is affine.

Write $X=\bigcup D\left(a_{i}\right)$ as a finite union such that $\left.\mathcal{F}\right|_{D\left(a_{i}\right)} \cong \widetilde{M}_{i}$ for some $R_{a_{i}}$-module M_{i}. Now, denote $f_{i}: D\left(a_{i}\right) \hookrightarrow X, f_{i j}: D\left(a_{i} a_{j}\right) \hookrightarrow X, \mathcal{G}=\left.\bigoplus_{i}\left(f_{i}\right)_{*} \mathcal{F}\right|_{D\left(a_{i}\right)}$ and $\mathcal{H}=$ $\left.\bigoplus_{i, j}\left(f_{i j}\right)_{*} \mathcal{F}\right|_{D\left(a_{i} a_{j}\right)}$. Consider the sequence of sheaves

$$
0 \longrightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H}
$$

where φ_{U} is the homomorphism given by $s \mapsto\left(\left.s\right|_{U \cap D\left(a_{i}\right)}\right)_{i}$ and ψ_{U} is the homomorphism given by $\left(s_{i}\right) \mapsto\left(\left.s_{i}\right|_{U \cap D\left(a_{i} a_{j}\right)}-\left.s_{j}\right|_{U \cap D\left(a_{i} a_{j}\right)}\right)_{i, j}$. Then the exactness of this sequence follows from the fact that \mathcal{F} is a sheaf.

Note that $\mathcal{F}_{D\left(a_{i}\right)} \cong \widetilde{M_{i}}$ and $\left.\mathcal{F}\right|_{D\left(a_{i} a_{j}\right)} \cong \widetilde{M_{i, j}}$ for some $A_{a_{i} a_{j}}$-module $M_{i j}$. Moreover, $\left(f_{i}\right)_{*} \widetilde{M}_{i}={ }_{R} \widetilde{M}_{i}$ and $\left(f_{i j}\right)_{*} \widetilde{M_{i j}}={ }_{R} \widetilde{M_{i j}}$. The exact sequence is thus

$$
0 \longrightarrow \mathcal{F} \xrightarrow{\varphi} \bigoplus_{i} \widetilde{{ }_{R} M_{i}} \xrightarrow{\psi} \bigoplus_{i, j} \widetilde{{ }_{R} M_{i, j}}
$$

Taking global sections of the exact sequence, we thus have a second exact sequence

$$
0 \longrightarrow \mathcal{F}(X) \xrightarrow{\varphi_{X}} \bigoplus_{i R} M_{i} \longrightarrow \bigoplus_{i, j R} M_{i, j}
$$

Taking \sim, we then get an exact sequence

$$
0 \longrightarrow \widetilde{\mathcal{F}(X)} \xrightarrow{\varphi_{X}} \bigoplus_{i} \widetilde{{ }_{R} M_{i}} \longrightarrow \bigoplus_{i, j} \widetilde{{ }_{R} M_{i, j}}
$$

Hence $\mathcal{F} \cong \operatorname{ker} \varphi \cong \widetilde{\mathcal{F}}$ and we are done. The statement for coherent \mathcal{O}_{X}-modules on Noetherian schemes follows by the same argumentation.

Theorem 2.5.8. Let X be a scheme and $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of quasi-coherent \mathcal{O}_{X}-modules. Then $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$ are quasi-coherent. Furthermore, if X is Noetherian and \mathcal{F} and \mathcal{G} are coherent then $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$ are coherent.
Proof. Let $U=\operatorname{Spec}(R) \subseteq X$ be an open affine set. By Theorem 2.5.7 $\left.\mathcal{F}\right|_{U} \cong \widetilde{M}$ and $\left.\mathcal{G}\right|_{U} \cong \widetilde{N}$ for some R-modules M and N. Then φ induces a homomorphism of R-modules $\beta: M=\mathcal{F}(U) \rightarrow N=\mathcal{G}(U)$. Let $K=\operatorname{ker} \beta$. We have an exact sequence

$$
0 \longrightarrow K \longrightarrow M \xrightarrow{\varphi} N
$$

Passing to \sim, we get an exact sequence

$$
0 \longrightarrow \widetilde{K} \longrightarrow \widetilde{M} \xrightarrow{\left.\varphi\right|_{U}} \tilde{N}
$$

And so $\left.(\operatorname{ker} \varphi)\right|_{U} \cong \widetilde{K}$ and $\operatorname{ker} \varphi$ is quasi-coherent. A similar argument proves the result for $\operatorname{im} \varphi$ and the Noetherian case.

Theorem 2.5.9. Let $f: X \rightarrow Y$ be a morphism of schemes, \mathcal{F} an \mathcal{O}_{X}-module and \mathcal{G} an \mathcal{O}_{Y}-module. We have that

1. if \mathcal{G} is quasi-coherent then $f^{*} \mathcal{G}$ is quasi-coherent.
2. if \mathcal{G} is coherent then $f^{*} \mathcal{G}$ is coherent.
3. if \mathcal{F} is quasi-coherent and

- for all $y \in Y$ there exists an open affine neighbourhood of $y W \subseteq Y$ such that $f^{-1} W=\bigcup_{i=1}^{n} U_{i}$ for some open affine U_{i}.
- for all $i, j, U_{i} \cap U_{j}=\bigcup_{k=1}^{m} U_{i, j, k}$ for some open affine $U_{i, j, k}$.
then $f_{*} \mathcal{F}$ is quasi-coherent.
Proof.
Part 1: Since quasi-coherency is a local property, we may assume that Y is affine. Then \mathcal{G} is given by some R-module M. If $U=\operatorname{Spec}(B) \subseteq X$ is open affine, Theorem 2.4.7 implies that

$$
\left.f^{*} \mathcal{G}\right|_{U} \cong \widehat{M \otimes_{R} B}
$$

which is a B-module and so $f^{*} \mathcal{G}$ is quasi-coherent.
Part 2: We follow the same argumentation as above. Since $f^{*} \mathcal{G}$ is coherent, M is finitely generated over R. Hence $M \otimes_{R} B$ is finitely generated over B and $f^{*} \mathcal{G}$ is coherent.
Part 3: As usual, we may assume that Y is affine. Let $f_{i}: U_{i} \hookrightarrow X, f_{i, j, k}: U_{i, j, k} \hookrightarrow X, \mathcal{G}=$ $\bigoplus_{i=1}^{n}\left(f_{i}\right)_{*}\left(\left.\mathcal{F}\right|_{U_{i}}\right)$ and $\mathcal{H}=\bigoplus_{i, j, k}\left(f_{i, j, k}\right)_{*}\left(\left.\mathcal{F}\right|_{U_{i, j, k}}\right)$. We then have a sequence of sheaves

$$
0 \longrightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H}
$$

where φ_{U} is given by $s \mapsto\left(\left.s\right|_{U_{i}}\right)_{i}$ and ψ_{U} is given by $\left(s_{i}\right)_{i} \mapsto\left(\left.s_{i}\right|_{U_{i, j, k}}-\left.s_{j}\right|_{U_{i, j, k}}\right)$. Then this sequence is exact since \mathcal{F} is a sheaf. Taking pushforwards yields an exact sequence

$$
0 \longrightarrow f_{*} \mathcal{F} \xrightarrow{\varphi} f_{*} \mathcal{G} \xrightarrow{\psi} f_{*} \mathcal{H}
$$

Note that

$$
f_{*} \mathcal{G}=\bigoplus_{i}\left(f_{*}\right)\left(f_{i}\right)_{*}\left(\left.\mathcal{F}\right|_{U_{i}}\right)
$$

and similarly for $f_{*} \mathcal{H}$. This implies that both $f_{*} \mathcal{G}$ and $f_{*} \mathcal{H}$ are quasi-coherent as they are both given by modules as a result of Theorem 2.4.7. $f_{*} \mathcal{F}$ is thus the kernel of a morphism of quasi-coherent \mathcal{O}_{X}-modules whence Theorem 2.5 .8 implies that $f_{*} \mathcal{F}$ is quasi-coherent.

Definition 2.5.10. Let X be a scheme. An ideal sheaf I of X is a subsheaf $I \subseteq \mathcal{O}_{X}$.
Theorem 2.5.11. Let X be a scheme. Then there is a one-to-one correspondence between the quasi-coherent ideal sheaves of X and the closed subschemes of X. Moreover, if X is Noetherian then the same is true for coherent ideal sheaves.

Proof. Let Y be a closed subscheme of X and let $f: Y \rightarrow X$ be a representative closed immersion of Y. By definition, we have that f maps Y homeomorphically onto a closed subset of X and that the corresponding morphism of sheaves $\varphi: \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{Y}$ is a surjection. Let $\mathcal{I}=\operatorname{ker} \varphi$. Then \mathcal{I} is clearly an ideal sheaf. We claim that \mathcal{I} is in fact quasi-coherent. Now, \mathcal{O}_{X} is itself quasi-coherent so by Theorem [2.5.9, it suffices to show that $f_{*} \mathcal{O}_{Y}$ is quasi-coherent.

Assume that $X=\operatorname{Spec}(R)$ is affine. Let $\left\{U_{i}\right\}$ be an open affine covering of Y and choose open affine $W_{i} \subseteq X$ such that $U_{i}=Y \cap W_{i}$ where Y is identified with a closed subset of X via f. We can cover X and, in particular, each W_{i}, by open affine sets of the form $D(b)$ so that we have a family of elements $\left\{b_{\alpha}\right\}$ such that for all α either $D\left(b_{\alpha}\right) \subseteq X \backslash Y$ or $D\left(b_{\alpha}\right) \subseteq W_{i}$ for some i. Since $X=\bigcup_{\alpha} D\left(b_{\alpha}\right)$, we have that $\sum\left(b_{\alpha}\right)=R$. Indeed, if this weren't the case then $\sum\left(b_{\alpha}\right)$ would be contained in some maximal ideal of R which is prime and thus not contained in any of the $D\left(b_{\alpha}\right)$. $\sum\left(b_{\alpha}\right)$ is thus finitely generated as an ideal and we may assume that there are only finitely many of the b_{α}, say b_{1}, \ldots, b_{n}. Now, for all $\alpha, f^{-1} D\left(b_{\alpha}\right)$ is an open affine subscheme of some U_{i} and thus of Y. Furthermore, $f^{-1} D\left(b_{\alpha}\right) \cap f^{-1} D\left(b_{\beta}\right)=f^{-1} D\left(b_{\alpha} b_{\beta}\right)$ and so the conditions of Part 3 of Theorem 2.5.9 are satisfied whence $f_{*} \mathcal{O}_{Y}$ is quasi-coherent.

Conversely, let $\mathcal{I} \subseteq \mathcal{O}_{X}$ be a quasi-coherent ideal sheaf. For all open affine sets $U=$ $\operatorname{Spec}(R)$, we have that $\left.\mathcal{I}\right|_{U}=\widetilde{I}$ for some ideal $I \triangleleft R$. Indeed, the R-modules contained in R are exactly the ideals of R. We shall construct a corresponding closed subscheme of X locally. Given an open affine set $U \subseteq X$ such that $\left.\mathcal{I}\right|_{U}=\widetilde{I}$, define $Y_{U}=V_{U}(I):=$ $\{\mathfrak{p} \in V(I) \mid \mathfrak{p} \in U\}$. Let Y be the union of all such Y_{U}; this set shall be the topological structure of the closed subscheme. We must first check that Y is well-defined - it is not yet clear that on $U \cap U^{\prime}$ this construction is independent of working with either U or U^{\prime}. In other words, given open affine sets $U=\operatorname{Spec}(R), U^{\prime}=\operatorname{Spec}\left(R^{\prime}\right) \subseteq X$, we must check that $Y_{U} \cap U^{\prime}=Y_{U^{\prime}} \cap U$. To this end, choose $\mathfrak{p} \in Y_{U} \cap U^{\prime}$. Since $U \cap U^{\prime}$ is again affine, there exists some $b^{\prime} \in R^{\prime}$ such that $\mathfrak{p} \in D_{U^{\prime}}\left(b^{\prime}\right) \subseteq U$. Now, $\mathcal{O}_{U^{\prime}}\left(D_{U^{\prime}}\left(b^{\prime}\right)\right)=R_{b^{\prime}}^{\prime}$ and $\mathcal{O}_{U}(U)=R$ so we get a homomorphism of rings $\theta: R \rightarrow R_{b^{\prime}}^{\prime}$. On the other hand, we have the canonical homomorphism $R^{\prime} \rightarrow R_{b^{\prime}}^{\prime}$. Then $\langle\theta(I)\rangle=I_{b^{\prime}}^{\prime}$. Hence if $I \subseteq \mathfrak{p}$ then $I_{b^{\prime}}^{\prime} \subseteq \mathfrak{p}$ whence $I \subseteq \mathfrak{p}$ so that $\mathfrak{p} \in Y_{U^{\prime}} \cap U$. By symmetry, it then follows that $Y_{U} \cap U^{\prime}=Y_{U^{\prime}} \cap U$ for all affine sets $U, U^{\prime} \subseteq X$.

Let \mathcal{G} denote the sheafification of the presheaf given by $U \mapsto \mathcal{O}_{X}(U) / \mathcal{I}(U)$. Since $Y \subseteq X$ is a closed subspace, it follows that $\left.\mathcal{G}\right|_{X \backslash Y}=0$. Hence $\mathcal{G}=f_{*} \mathcal{O}_{Y}$ for some sheaf \mathcal{O}_{Y} where $f: Y \hookrightarrow X$ is the inclusion.

In particular, \mathcal{O}_{Y} is given on open sets $W \subseteq Y$ by writing $Y=U \cap X$ for some open set U of X and setting $\mathcal{O}_{Y}=\mathcal{G}(U)$. This is well-defined since $\left.\mathcal{G}\right|_{X \backslash Y}=0$. Moreover, let
$x \in Y \subseteq X$. Choose an affine set $U \subseteq X$ so that $U=\operatorname{Spec} R$ and $\mathcal{I}(U)=I \triangleleft R$. Then $\left(Y \cap U, \mathcal{O}_{Y \cap U}\right)=\operatorname{Spec}(R / I)$ so that Y is a scheme. Hence by construction we have an exact sequence

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{X} \longrightarrow f_{*} \mathcal{O}_{Y} \longrightarrow 0
$$

which implies that $f: Y \hookrightarrow X$ is a closed immersion and so Y is a closed subscheme.

2.6 Sheaves Associated to Graded Modules

Definition 2.6.1. Let $S=\bigoplus_{d \geq 0} S_{d}$ be a graded ring and M an S-module. We say that M is graded if there exist a family of S-submodules of $M\left\{M_{d}\right\}_{d \in \mathbb{Z}}$ such that

$$
M=\bigoplus_{d \in \mathbb{Z}} M_{d}
$$

and $S_{d} \cdot M_{e} \subseteq M_{d+e}$.
Definition 2.6.2. Let $X=\operatorname{Proj}(S)$ be a projective scheme and M a graded S-module. We define the \mathcal{O}_{X}-module \widetilde{M} by

$$
\widetilde{M}(U)=\left\{\begin{array}{l|l}
s: U \rightarrow \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} & \begin{array}{c}
\forall \mathfrak{p} \in U, s(\mathfrak{p}) \in M_{\mathfrak{p}} \\
\exists \text { open } \mathfrak{p} \in W \subseteq U \text { such that } \forall \mathfrak{q} \in W \\
s(\mathfrak{q})=\frac{m}{a} \in M_{\mathfrak{q}} \text { where } m \in M, a \in R \\
\text { are homogeneous of the same degree }
\end{array}
\end{array}\right\}
$$

Remark. Let $X=\operatorname{Proj}(S)$ be a projective scheme. Then $\mathcal{O}_{X} \cong \widetilde{S}$.
Theorem 2.6.3. Let $X=\operatorname{Proj}(S)$ be a projective scheme. Then

1. $(\widetilde{M})_{\mathfrak{p}} \cong M_{(\mathfrak{p})}$ for all $\mathfrak{p} \in X$.
2. $\left.\widetilde{M}\right|_{D_{+}(b)} \cong \widetilde{M_{(b)}}$ considered as a sheaf on $\operatorname{Spec}\left(S_{(b)}\right)$ for all homogeneous $b \in S_{+}$.
3. \widetilde{M} is quasi-coherent.

Proof. The proof for Part 1 and Part 2 are the same as for the case of $M=S$. Part 3 is an immediate consequence of Part 2 since the open sets $D_{+}(b)$ are a basis for X.

Definition 2.6.4. Let $S=\bigoplus_{d \geq 0} S_{d}$ be a graded ring and $M=\bigoplus_{d \in \mathbb{Z}} M_{d}$ a graded S module. Given $n \in \mathbb{Z}$, let $M(\bar{n})$ be the graded S-module whose $\operatorname{deg} d$ piece is M_{d+n}. Moreover, if $X=\operatorname{Proj}(S)$ is a projective scheme and \mathcal{F} an \mathcal{O}_{X}-module, we define

$$
\begin{aligned}
\mathcal{O}_{X}(n) & =\widetilde{S(n)} \\
\mathcal{F}(n) & =\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n)
\end{aligned}
$$

Definition 2.6.5. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. An \mathcal{O}_{X} module \mathcal{L} is said to be invertible if for all $x \in X$ there exists an open set $x \in U$ such that $\left.\mathcal{L}\right|_{U} \cong \mathcal{O}_{U}$.

Theorem 2.6.6. $S=\bigoplus_{d>0} S_{d}$ be a graded ring which is generated over S_{0} (as an S_{0}-algebra) by elements in S_{1} and $M=\bigoplus_{d \in \mathbb{Z}} M_{d}, N=\bigoplus_{d \in \mathbb{Z}} N_{d}$ a graded S-modules. Then

1. $\mathcal{O}_{X}(n)$ is invertible for all $n \in \mathbb{Z}$.
2. $\widetilde{M} \otimes_{\mathcal{O}_{X}} \widetilde{N}=\widehat{M \otimes_{S} N}$.
3. $\widetilde{M}(n) \cong \widetilde{M(n)}$.
4. $\mathcal{O}_{X}(m) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n) \cong \mathcal{O}_{X}(m+n)$ for all $m, n \in \mathbb{Z}$.

Proof.
Part 1: Since S is generated over S_{0} by S_{1}, sets of the form $D_{+}(b)$ with $b \in S_{1}$ cover X. Hence, given $b \in S_{1}$, it suffices to show that $\mathcal{O}_{D_{+}(b)}(n)$ is invertible for all $n \in \mathbb{Z}$.

To this end, fix $b \in S_{1}$ and $n \in \mathbb{Z}$. We have

$$
\left.\mathcal{O}_{X}\right|_{D_{+}(b)}=\left.\widetilde{S(n)}\right|_{D_{+}(b)} \cong \widetilde{S(n)_{(b)}}
$$

Now, we have an isomorphism

$$
\begin{aligned}
S(n)_{(b)} & \rightarrow S_{(b)} \\
\frac{a}{b^{r}} & \mapsto \frac{a}{b^{r+n}}
\end{aligned}
$$

So that

$$
\left.\mathcal{O}_{X}(n)\right|_{D_{+}(b)} \cong \widetilde{S_{(b)}} \cong \mathcal{O}_{D_{+}(b)}
$$

Part 2: We construct an isomorphism of \mathcal{O}_{X}-modules

$$
\varphi: \widetilde{M} \otimes_{\mathcal{O}_{X}} \tilde{N} \rightarrow \overline{M \otimes_{S} N}
$$

Since S is generated over S_{0} as an S_{0}-algebra by elements of S_{1}, it suffices to define φ on open sets $D_{+}(b)$ for $b \in S_{1}$. Observe that we have

$$
\begin{aligned}
\left(\widetilde{M} \otimes_{\mathcal{O}_{X}} \widetilde{N}\right)\left(D_{+}(b)\right) & \left.\cong\left(\widetilde{M} \otimes_{\mathcal{O}_{X}} \widetilde{N}\right)\right|_{D_{+}(b)}\left(D_{+}(b)\right) \\
& =\left(\widetilde{M_{(b)}} \otimes_{D_{+}(b)} \widetilde{N(b)}\right)\left(D_{+}(b)\right) \\
& \cong M_{(b)} \otimes_{S_{(b)}} N_{(b)}
\end{aligned}
$$

Moreover, we have

$$
\overline{M \otimes_{S} N}\left(D_{+}(b)\right) \cong\left(M \otimes_{S} N\right)_{(b)}
$$

Now note that we have a canonical isomorphism

$$
\begin{aligned}
M_{(b)} \otimes_{S_{(b)}} N_{(b)} & \rightarrow\left(M \otimes_{S} N\right)_{(b)} \\
\frac{m}{b^{n}} \otimes \frac{n}{b^{n^{\prime}}} & \mapsto \frac{m \otimes n}{b^{n+n^{\prime}}}
\end{aligned}
$$

since the tensor product commutes with localisation. We can thus define $\varphi_{D_{+}(b)}$ to be this isomorphism and we are done.
Part 3: By Part 2 we have

$$
\begin{aligned}
\widetilde{M}(n) & =\widetilde{M} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n) \\
& =\widetilde{M} \otimes_{\mathcal{O}_{X}} \widetilde{S(n)} \\
& \cong \widetilde{M} \otimes_{S} S(n)
\end{aligned}
$$

Now note that we have an isomorphism

$$
\begin{aligned}
M \otimes_{S} S(n) & \rightarrow M(n) \\
m \otimes a & \mapsto a m
\end{aligned}
$$

so that

$$
\widetilde{M}(n) \cong \widetilde{M \otimes_{S} S(n)} \cong \widetilde{M(n)}
$$

Part 4: By Part 2 we have

$$
\mathcal{O}_{X}(m) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n)=\widetilde{S(m)} \otimes_{\mathcal{O}_{X}} \widetilde{S(n)} \cong \widehat{S(m) \otimes_{S} S(n)}
$$

Now note that we have an isomorphism

$$
\begin{aligned}
S(m) \otimes S(n) & \rightarrow S(m+n) \\
a \otimes b & \mapsto a b
\end{aligned}
$$

so that

$$
\mathcal{O}_{X}(m) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n) \cong \widehat{S(m) \otimes_{S} S(n)} \cong \widehat{S(m+n)}
$$

Lemma 2.6.7. Let $X=\operatorname{Proj}(T)$ and $Y=\operatorname{Proj}(S)$ be projective schemes and $\alpha: S \rightarrow T$ a homomorphism of graded rings. Then α induces a morphism of schemes $f: U \rightarrow Y$ where

$$
U=\left\{\mathfrak{p} \in \operatorname{Proj}(T) \mid \alpha^{-1}(\mathfrak{p}) \in \operatorname{Proj}(S)\right\}
$$

Moreover, if α is surjective then this morphism in fact a closed immersion $f: X \rightarrow Y$.
Proof. Let $S=\bigoplus_{d \geq 0} S_{d}$ and $T=\bigoplus_{d \geq 0} T_{d}$ and define

$$
\begin{aligned}
f: U & \rightarrow Y \\
\mathfrak{q} & \mapsto \alpha^{-1}(\mathfrak{q})
\end{aligned}
$$

which is well-defined since α preserves degrees. To show that this map is continuous, it suffices to show that $f^{-1}\left(D_{+}(b)\right)$ is open for all homogeneous $b \in S$. But

$$
f^{-1}\left(D_{+}(b)\right)=\left(\alpha^{-1}\right)^{-1}\left(D_{+}(b)\right)=U \cap D_{+}(\alpha(b))
$$

which is clearly open. We must now define a morphism of sheaves $\varphi: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{U}$. To this end, we must provide a homomorphism of rings $\varphi_{V}: \mathcal{O}_{Y}(V) \rightarrow\left(f_{*} \mathcal{O}_{U}\right)(V)=\mathcal{O}_{U}\left(f^{-1} V\right)$ for each open set $V \subseteq Y$. Once again, it suffices to provide a homomorphism of rings

$$
\varphi_{D_{+}(b)}: \mathcal{O}_{Y}\left(D_{+}(b)\right) \rightarrow \mathcal{O}_{U}\left(f^{-1}\left(D_{+}(b)\right)\right)=\mathcal{O}_{U}\left(U \cap D_{+}(\alpha(b))\right)=\mathcal{O}_{X}\left(U \cap D_{+}(\alpha(b))\right)
$$

for each homogeneous $b \in S$. Observe that we have a natural homomorphism of rings

$$
\mathcal{O}_{Y}\left(D_{+}(b)\right)=S_{(b)} \rightarrow T_{(\alpha(b))}=\mathcal{O}_{X}\left(D_{+}(\alpha(b))\right)
$$

induced by α. Composing this homomorphism with the restriction to U provides us with the desired homomorpism. To show that it is indeed a morphism of sheaves, we need to show that the diagram

commutes. But this is clear by construction. If α is surjective then $U=X$ and we get a morphism of schemes $f: X \rightarrow Y$. Letting $I=$ ker α we then have an exact sequence

$$
0 \longrightarrow I \longrightarrow S \longrightarrow T \cong S / I \longrightarrow 0
$$

which yields an exact sequence of sheaves

$$
0 \longrightarrow \widetilde{I} \longrightarrow \widetilde{S} \longrightarrow \widetilde{T} \longrightarrow 0
$$

with \widetilde{I} an ideal sheaf of $\mathcal{O}_{Y}=\widetilde{S}$. We thus have a closed immersion $f: X \rightarrow Y$ and so X is a closed subscheme of Y.

Theorem 2.6.8. Let $S=\bigoplus_{d \geq 0} S_{d}$ and $T=\bigoplus_{d \geq 0} T_{d}$ such that S is generated as an S_{0-} algebra by S_{1}. Let $X=\operatorname{Proj}(S)$ and $Y=\operatorname{Proj}(T)$ be the corresponding projective schemes and suppose we are given a surjective ring homomorphism $\alpha: S \rightarrow T$ with $f: Y \rightarrow X$ the corresponding morphism of schemes.

1. If L is a graded S-module then $f^{*} \widetilde{L} \cong \overline{L \otimes_{S} T}$.
2. If K is a graded T-module then $f_{*} \widetilde{K} \cong \widetilde{{ }_{S} K}$ where ${ }_{S} K$ is K considered as a graded S-module via α.
In particular, we have $f^{*} \mathcal{O}_{X}(n) \cong \mathcal{O}_{Y}(n)$ and $f_{*} \mathcal{O}_{Y}(n) \cong\left(f_{*} \mathcal{O}_{Y}\right)(n) \cong\left(f_{*} \mathcal{O}_{Y}\right) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n)$.
Proof. We shall construct a morphism of \mathcal{O}_{X}-modules $\psi: f^{*} \widetilde{L} \rightarrow \widetilde{L \otimes_{S} T}$. It suffices to construct an isomorphism on open sets of the form $D_{+}(c) \subseteq Y$ where $c \in T_{1}$. Let $b \in S_{1}$ be such that $\alpha(b)=c$. Expanding definitions, we see that

$$
\begin{aligned}
f^{*}\left(\widetilde{L}\left(D_{+}(c)\right)\right) & =f^{*}\left(\left.\widetilde{L}\right|_{D_{+}(b)}\right)\left(D_{+}(c)\right) \\
& =f^{*}\left(\widetilde{\left.L_{(b)}\right)}\left(D_{+}(c)\right)\right. \\
& \left.=\widehat{L_{(b)} \otimes_{S_{(b)}} T_{(c)}}\left(D_{+}(c)\right)\right) \\
& \cong L_{(b)} \otimes_{S_{(b)}} T_{(c)}
\end{aligned}
$$

On the other hand, we have

$$
\widetilde{L \otimes_{S} T}\left(D_{+}(c)\right)=\left(L \otimes_{S} T\right)_{(c)}
$$

Now, we have an isomorphism

$$
\begin{aligned}
L_{(b)} \otimes_{S_{(b)}} T_{(c)} & \rightarrow\left(L \otimes_{S} T\right)_{(c)} \\
\frac{l}{b^{r}} \otimes \frac{t}{c^{r^{\prime}}} & \mapsto \frac{l \otimes t}{c^{r+r^{\prime}}}
\end{aligned}
$$

so we have an isomorphism $\psi_{D_{+}(c)}:\left(f^{*} \widetilde{L}\right)\left(D_{+}(c)\right) \rightarrow \overline{L \otimes_{S} T}\left(D_{+}(c)\right)$ which induces an isomorphism ψ_{V} for all open sets $V \subseteq Y$ and so an isomorphism of \mathcal{O}_{X}-modules ψ. A similar argument proves that $f_{*} \widetilde{K} \cong \widetilde{{ }_{S} K}$. Finally,

$$
f^{*} \mathcal{O}_{X}(n) \cong \widetilde{f^{*} S(n)} \cong \widetilde{S(n) \otimes_{S} T}=\widetilde{T(n)}=\mathcal{O}_{Y}(n)
$$

via the isomorphism

$$
\begin{aligned}
S(n) \otimes_{S} T & \rightarrow T(n) \\
a \otimes t & \mapsto a t
\end{aligned}
$$

and

$$
f_{*} \mathcal{O}_{Y}(n) \cong f_{*} \widetilde{T(n)} \cong \widetilde{{ }_{S} T(n)} \cong \widetilde{{ }_{S} T \otimes_{S} S(n)} \cong f_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n)
$$

via the isomorphism

$$
\begin{aligned}
{ }_{S} T \otimes_{S} S(n) & \rightarrow{ }_{S} T(n) \\
t \otimes a & \mapsto a t
\end{aligned}
$$

3 Divisors and Differentials

3.1 Invertible Sheaves and Cartier Divisors

Definition 3.1.1. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. We say that an \mathcal{O}_{X}-module \mathcal{F} is locally free of rank \boldsymbol{n} if for all $x \in X$ there exists an open $x \in U \subseteq X$ such that

$$
\left.\mathcal{F}\right|_{U} \cong \bigoplus_{i=1}^{n} \mathcal{O}_{U}
$$

Note that if $n=1$ then this is just the definition of an invertible \mathcal{O}_{X}-module.
Definition 3.1.2. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and $\mathcal{F}, \mathcal{G} \mathcal{O}_{X}$-modules. We define an \mathcal{O}_{X}-module $\operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G})$ whose sections are given by

$$
\operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G})(U)=\left\{\varphi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U} \mid \varphi \text { is a morphism of } \mathcal{O}_{X} \text {-modules }\right\}
$$

Proposition 3.1.3. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and $\mathcal{F}, \mathcal{G} \mathcal{O}_{X}$-modules. Then $\operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G})$ is indeed an \mathcal{O}_{X}-module.

Proof. We must first show that $\mathcal{H}=\operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G})$ is a sheaf of abelian groups. Indeed, fix an open set $U \subseteq X$. We define an abelian group structure on $\mathcal{H}(U)$ as follows. Given two morphisms $\varphi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$ and $\psi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$ we define

$$
\left.(\varphi+\psi)\right|_{V}=\left.\varphi\right|_{V}+\left.\psi\right|_{V}
$$

for all open sets $V \subseteq U$. This is a well-defined morphism $(\varphi+\psi): \mathcal{F} \rightarrow \mathcal{G}$ since φ and ψ are morphisms of sheaves. The identity morphism $e:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$ is given by the trivial morphism $e_{V}:\left.\left.\mathcal{F}\right|_{U}(V) \rightarrow \mathcal{G}\right|_{U}(V)$. Given a morphism $\varphi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$, its inverse $\varphi^{-1}:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$ is given pointwise by

$$
\begin{aligned}
\varphi_{V}^{-1}:\left.\mathcal{F}\right|_{U}(V) & \left.\rightarrow \mathcal{G}\right|_{U}(V) \\
s & \mapsto \varphi_{V}(s)^{-1}
\end{aligned}
$$

Hence $\mathcal{H}(U)$ is indeed an abelian group for all open sets $U \subseteq V$. Now, given open sets $U \subseteq V \subseteq$, we define the restriction morphisms $\left.\right|_{V}$ by sending a section $\varphi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{F}\right|_{U}$ to $\left.\left.\varphi\right|_{V} \in \operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\mathcal{F}\right|_{V}, \mathcal{G} \mid\right) V\right) . \mathcal{H}$ is thus a presheaf of abelian groups.

We next verify that \mathcal{H} is a sheaf. To this end, fix an open subset $U \subseteq X$ and an open covering $U=\bigcup_{i} U_{i}$. Let $\varphi_{i} \in \mathcal{H}\left(U_{i}\right)$ be sections such that $\left.\varphi_{i}\right|_{U_{i} \cap U_{j}}=\left.\varphi_{j}\right|_{U_{i} \cap U_{j}}$. We need to show that there exists a unique $\varphi \in \mathcal{H}(U)$ such that $\left.\varphi\right|_{U_{i}}=\varphi_{i}$. Observe that, given an open subset $V \subseteq U, A_{i}=V \cap U_{i}$ cover V. Now fix a section $\left.s \in \mathcal{F}\right|_{U}(V)$ and denote $s_{i}=\left.s\right|_{A_{i}}$. For each i we have a morphism

$$
\begin{aligned}
\left.\varphi_{i}\right|_{A_{i}}:\left.\mathcal{F}\right|_{U}\left(A_{i}\right) & \left.\rightarrow \mathcal{G}\right|_{U}\left(A_{i}\right) \\
s_{i} & \mapsto t_{i}
\end{aligned}
$$

By the compatibility of φ on overlaps, the t_{i} are also compatible on overlaps. Since $\left.\mathcal{G}\right|_{U}$ is a sheaf, there exists a unique $\left.t \in \mathcal{G}\right|_{U}(V)$ such that $\left.t\right|_{A_{i}}=t_{i}$ for each i. We can then define

$$
\begin{aligned}
\varphi_{V}:\left.\mathcal{F}\right|_{U}(V) & \left.\rightarrow \mathcal{G}\right|_{U}(V) \\
s & \mapsto t
\end{aligned}
$$

Now, by construction, $\left.\varphi\right|_{U_{i}}=\varphi_{i}$ and so φ is the desired section $\varphi \in \mathcal{H}(U)$. Hence \mathcal{H} is a sheaf of abelian groups.

It remains to show that \mathcal{H} is an \mathcal{O}_{X}-module. To this end we must show that, for all open subsets $U \subseteq X, \mathcal{H}(U)$ is an $\mathcal{O}_{X}(U)$-module. As we have shown, it is an abelian group so we just need to endow it with a $\mathcal{O}_{X}(U)$-module strucutre. Fix a section $\varphi:\left.\left.\mathcal{F}\right|_{U} \rightarrow \mathcal{G}\right|_{U}$ and an element $r \in \mathcal{O}_{X}(U)$. Define $r \cdot \varphi$ to be the morphism that is given pointwise by

$$
\begin{aligned}
(r \cdot \varphi)_{V}:\left.\mathcal{F}\right|_{U}(V) & \left.\rightarrow \mathcal{G}\right|_{U}(V) \\
s & \left.\mapsto r\right|_{V} \cdot \varphi(s)
\end{aligned}
$$

To verify that this indeed gives us an $\mathcal{O}_{X}(U)$-module structure, fix $\phi, \psi \in \mathcal{H}(U)$ and a section $\left.s \in F\right|_{U}(V)$. Then

$$
\begin{aligned}
\left.(r \cdot(\varphi+\psi))\right|_{V}(s)=\left.r\right|_{V} \cdot(\varphi+\psi)(s) & =\left.r\right|_{V} \cdot(\varphi(s)+\psi(s))=\left.r\right|_{V} \cdot \varphi(s)+\left.r\right|_{V} \psi(s) \\
& =\left.(r \cdot \varphi)\right|_{V}+\left.(r \cdot \psi)\right|_{V}
\end{aligned}
$$

The other module axioms follow similarly.
Lemma 3.1.4. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and \mathcal{L} an invertible \mathcal{O}_{X}-module. Then $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{O}_{X}\right)$ is also an invertible \mathcal{O}_{X}-module.
Proof. Fix $x \in X$. We need to exhibit an open neighbourhood $x \in W \subseteq X$ such that $\left.\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{O}_{X}\right)\right|_{W} \cong \mathcal{O}_{W}$. Since \mathcal{L} is invertible, there exists an open neighbourhood $x \in$ $W \subseteq X$ such that $\left.\mathcal{L}\right|_{W} \cong \mathcal{O}_{W}$. Then

$$
\left.\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{O}_{X}\right)\right|_{W}=\operatorname{Hom}_{\mathcal{O}_{W}}\left(\left.\mathcal{L}\right|_{W}, \mathcal{O}_{W}\right) \cong \operatorname{Hom}_{\mathcal{O}_{W}}\left(\mathcal{O}_{W}, \mathcal{O}_{W}\right)-\mathcal{O}_{W}
$$

so W is a suitable choice of neighbourhood.
Theorem 3.1.5. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. Then the set of invertible sheaves (up to isomorphism) on X is an abelian group called the Picard group of X and denoted $\operatorname{Pic}(X)$.
Proof. We define the group operation on $\operatorname{Pic}(X)$ to be the tensor product of \mathcal{O}_{X}-modules which is clearly a commutative binary operation. We first check that, given $\mathcal{L}, \mathcal{M} \in \operatorname{Pic}(X)$ we have $\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{M} \in \operatorname{Pic}(X)$. Indeed for all $x \in X$ there exists an open neighbourhood $x \in U \subseteq X$ such that $\left.\mathcal{L}\right|_{U}=\mathcal{O}_{U}$ and an open neighbourhood $x \in V \subseteq X$ such that $\left.\mathcal{M}\right|_{V}=\mathcal{O}_{V}$. Let $W=U \cap V$. Then

$$
\left.\left(\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{M}\right)\right|_{W} \cong \mathcal{O}_{W} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{W} \cong \mathcal{O}_{W}
$$

The identity element is clearly \mathcal{O}_{X} since

$$
\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X} \cong \mathcal{L}
$$

Given $\mathcal{L} \in \operatorname{Pic}(X)$, we claim that the inverse of \mathcal{L} is given by $\mathcal{L}^{-1}=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{O}_{X}\right)$. To this end, we shall construct an isomorphism of \mathcal{O}_{X}-modules $\varphi: \mathcal{L}^{-1} \otimes_{\mathcal{O}_{X}} \mathcal{L} \rightarrow \mathcal{O}_{X}$. We define φ pointwise by

$$
\begin{aligned}
\varphi_{U}: \mathcal{L}^{-1}(U) \otimes_{\mathcal{O}_{X}(U)} & \mathcal{L}(U)
\end{aligned} \rightarrow \mathcal{O}_{X}(U)
$$

Since for every $x \in X$ we can find an open neighbourhood $x \in W \subseteq X$ such that $\left.\mathcal{L}\right|_{W} \cong$ $\left.\mathcal{O}_{W} \mathcal{L}^{-1}\right|_{W}$, we get an induced isomorphism of stalks so ϕ must be an isomorphism.

Finally, the associativity of the binary operation is immediate from the associativity of tensor products of modules.

Definition 3.1.6. Let X be an integral scheme, η its unique generic point and $K=\mathcal{O}_{\eta}$ its function field so that we have an injective ring homomorphism $\mathcal{O}_{X}(U) \hookrightarrow K$ for all open $U \subseteq X$. We define a Cartier divisor to be a system of the form $\left\{\left(U_{i}, f_{i}\right)\right\}_{i \in I}$ where the U_{i} give an open covering of X and $f_{i} \in K$ is such that f_{i} / f_{j} and f_{j} / f_{i} are both in $\mathcal{O}_{X}\left(U_{i} \cap U_{j}\right)$.

We define an equivalence relation \sim on the set of all Cartier divisors by declaring that $\left(U_{i}, f_{i}\right) \sim\left(U_{\alpha}, g_{\alpha}\right)$ if and only if for all i, α we have that f_{i} / g_{α} is invertible in $\mathcal{O}_{X}\left(U_{i} \cap V_{\alpha}\right)$.

A Cartier divisor D is said to be principal if it is represented by a single pair (X, f) for some $f \in K$. In this case, we write $D \sim 0$. Given two Cartier divisors E and F represented by $\left(U_{i}, f_{i}\right)$ and (V_{α}, g_{α}) respectively, we define $E+F$ to be the divisor given by the system $\left.U_{i} \cap V_{\alpha}, f_{i} g_{\alpha}\right)$ and $-E$ the divisor given by the system $\left(U_{i}, 1 / f_{i}\right)$. If $E-F \sim 0$ then we write $E \sim F$.

We define the Cartier divisor class group, denoted $\operatorname{Div}(X)$, to be the free abelian group on the set of Cartier divisors modulo the equivalence relation \sim.

Definition 3.1.7. Let X be an integral scheme and K its function field. Given a Cartier divisor $D=\left(V_{i}, f_{i}\right)$, we define an \mathcal{O}_{X}-module

$$
\mathcal{O}_{X}(D)(U)=\left\{h \in K \mid h f_{i} \in \mathcal{O}_{X}\left(U \cap V_{i}\right)\right\}
$$

Lemma 3.1.8. Let X be an integral scheme and K its functon field. Let D be a Cartier divisor for X. Then $\mathcal{O}_{X}(D)$ is indeed an \mathcal{O}_{X}-module.

Proof. We must first show that this definition is independent of the choice of representative of D. Indeed, let $D=\left(V_{i}, f_{i}\right)$ and $D^{\prime}=\left(W_{\alpha}, g_{\alpha}\right)$ be two representatives of D (slightly abusing notation). We want to show that $\mathcal{O}_{X}(D)=\mathcal{O}_{X}\left(D^{\prime}\right)$. Fix an open set $U \subseteq X$ and $h \in \mathcal{O}_{X}(D)(U)$. By definition, h is an element of K such that $h f_{i} \in \mathcal{O}_{X}\left(U \cap V_{i}\right)$ for all i. Since D and D^{\prime} define the same divisor, we have that f_{i} / g_{α} is invertible in $\mathcal{O}_{X}\left(U_{i} \cap V_{\alpha}\right)$ for all i, α. Then

$$
\begin{aligned}
h f_{i} \in \mathcal{O}_{X}\left(U \cap V_{i}\right) & \Longrightarrow h f_{i} \cdot \frac{g_{\alpha}}{f_{i}} \in \mathcal{O}_{X}\left(U \cap V_{i} \cap W_{\alpha}\right) \text { for all } i, \alpha \\
& \Longrightarrow h g_{\alpha} \in \mathcal{O}_{X}\left(U \cap W_{\alpha}\right) \text { for all } \alpha \\
& \Longrightarrow h \in \mathcal{O}_{X}\left(D^{\prime}\right)(U)
\end{aligned}
$$

Hence $\mathcal{O}_{X}(D) \subseteq \mathcal{O}_{X}\left(D^{\prime}\right)$. By symmetry it then follows that $\mathcal{O}_{X}(D)=\mathcal{O}_{X}\left(D^{\prime}\right)$.

It is clear that $\mathcal{O}_{X}(D)(U)$ is an abelian group under addition and that it inherits the restriction morphisms from \mathcal{O}_{X} and is thus a presheaf. To see that it is a sheaf, let $U=\bigcup_{i} U_{i}$ be an open cover and $h_{i} \in \mathcal{O}_{X}(D)\left(U_{i}\right)$ such that $\left.h_{i}\right|_{U_{i} \cap U_{j}}=\left.h_{j}\right|_{U_{i} \cap U_{j}}$. We need to show that there exists a unique $h \in \mathcal{O}_{X}(D)(U)$ such that $\left.h\right|_{U_{i}}=h_{i}$. Fixing m, observe that $\left\{U_{i} \cap V_{m}\right\}_{i \in I}$ is an open cover of $U \cap V_{m}$. Then $h_{i} f_{m}$ are compatible on overlaps since the h_{i} are. Since \mathcal{O}_{X} is a sheaf, there exists a unique $h^{\prime} \in U \cap V_{m}$ such that $\left.h^{\prime}\right|_{U_{i}}=h_{i} f_{m}$. Defining $h=h^{\prime} f_{m}^{-1} \in K$ shows that $h f_{m} \in \mathcal{O}_{X}\left(U \cap V_{m}\right)$. Indeed, if this were not the case then we would have that $\left.\left(h f_{m}\right)\right|_{U_{i}}=h_{i} f_{m} \notin \mathcal{O}_{X}\left(U_{i} \cap V_{m}\right)$ which is a contradiction. Now by the definition of a Cartier divisor, we have

$$
\begin{aligned}
h f_{m} \in \mathcal{O}_{X}\left(U \cap V_{m}\right) & \Longrightarrow h f_{m} \cdot \frac{f_{m^{\prime}}}{f_{m}} \in \mathcal{O}_{X}\left(U \cap V_{m} \cap V_{m^{\prime}}\right) \\
& \Longrightarrow h f_{m^{\prime}} \in \mathcal{O}_{X}\left(U \cap V_{m^{\prime}}\right)
\end{aligned}
$$

so that $h \in \mathcal{O}_{X}(D)(U)$. Finally, $\mathcal{O}_{X}(D)$ clearly inherits an \mathcal{O}_{X}-module structure as a subset of $K=\mathcal{O}_{X}(U)$.

Theorem 3.1.9. Let X be an integral scheme and K its function field. If D and E are Cartier divisors on X then

1. $\mathcal{O}_{X}(D)$ is invertible.
2. $\mathcal{O}_{X}(D) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(E) \cong \mathcal{O}_{X}(D+E)$.
3. $\mathcal{O}_{X}(-D) \cong \mathcal{O}_{X}(D)^{-1}$.
4. $D \sim E$ if and only if $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X}(E)$.

Proof.
Part 1: Suppose that D is represented by $\left(U_{i}, f_{i}\right)$. We have isomorphisms

$$
\left.\mathcal{O}_{X}(D)\right|_{U_{i}} \cong \mathcal{O}_{U_{i}} \cdot \frac{1}{f_{i}} \cong \mathcal{O}_{U_{i}}
$$

Part 2: Define an isomorphism

$$
\begin{aligned}
\psi_{U}: \mathcal{O}_{X}(D)(U) \otimes_{\mathcal{O}_{X}(U)} \mathcal{O}_{X}(E)(U) & \rightarrow \mathcal{O}_{X}(D+E)(U) \\
h \otimes h^{\prime} & \mapsto h h^{\prime}
\end{aligned}
$$

on open sets $U \subseteq X$. To see that this is well-defined, suppose that $\left(U_{i}, f_{i}\right)$ represents D and $\left(V_{\alpha}, g_{\alpha}\right)$ represents E. Since $h \in \mathcal{O}_{X}(D)$ we have $h f_{i} \in \mathcal{O}_{X}\left(U \cap U_{i}\right)$ for all i. Similarly, $h^{\prime} \in \mathcal{O}_{X}(E)$ so that $h^{\prime} g_{\alpha} \in \mathcal{O}_{X}\left(U \cap V_{\alpha}\right)$ for all α. Then $h h^{\prime} f_{i} g_{\alpha} \in \mathcal{O}_{X}\left(U \cap U_{i} \cap V_{\alpha}\right)$ for all i and α. Hence $h h^{\prime} \in \mathcal{O}_{X}(D+E)(U)$.

Now, all \mathcal{O}_{X}-modules are invertible so we can find a common open set U such that

$$
\left.\left.\left.\left.\mathcal{O}_{X}(D)\right|_{U} \cong \mathcal{O}_{X}(E)\right|_{U} \cong \mathcal{O}_{X}\left(D_{E}\right)\right|_{U} \cong \mathcal{O}_{X}\right|_{U}
$$

Hence we have an induced isomorphism of stalks for every $x \in X$ whence they must be isomorphic.
Part 3: By the previous Part, we have

$$
\mathcal{O}_{X}(-D) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(D) \cong \mathcal{O}_{X}(-D+D) \cong \mathcal{O}_{X}(0) \cong \mathcal{O}_{X}
$$

But inverses are unique in $\operatorname{Pic}(X)$ so we must have that $\mathcal{O}_{X}(-D) \cong \mathcal{O}_{X}(D)^{-1}$.
Part 4: It suffices to show that $D \sim 0$ if and only if $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X}$. To this end, first suppose that $D \sim 0$ so that D is represented by (X, f). Then $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X} \cdot \frac{1}{f} \cong \mathcal{O}_{X}$.

Conversely, suppose that we have an isomorphism $\varphi: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D)$ and that D is represented by $\left(U_{i}, f_{i}\right)$. Let $f \in \mathcal{O}_{X}(D)(X)$ be the image of $1 \in \mathcal{O}_{X}(X)$ under φ_{X}. Then $\left.\mathcal{O}_{X}(D)\right|_{U}=\mathcal{O}_{U} \cdot \frac{1}{f}$.

On the other hand, $\left.\mathcal{O}_{X}(D)\right|_{U_{i}}=\mathcal{O}_{U_{i}} \cdot \frac{1}{f_{i}}$. Hence f / f_{i} is invertible in $\mathcal{O}_{X}\left(U_{i}\right)$ for all i so that D is represented by (X, f) whence $D \sim 0$.

Remark. This Theorem provides an injection $\operatorname{Div}(X) \rightarrow \operatorname{Pic}(X)$.

3.2 Differential Forms

Definition 3.2.1. Let R be a ring and S an R-algebra. For all $s \in S$ let $d s$ be a symbol and X the free S-module generated by the $d s$. Let L be the S-submodule generated by the relations

1. $d r, r \in R$
2. $d(s+t)-d s-d t, s, t \in S$
3. $d(s t)-t d s-s d t, s, t \in S$

We define the module of relative differential forms of S over R to be $\Omega_{S / R}=X / L$.
Remark. Let M be an S-module and $\alpha: S \rightarrow M$ a homomorphism such that

- $\alpha(r)=0$ for all $r \in R$
- $\alpha(s+t)=\alpha(s)+\alpha(t)$
- $\alpha(s t)=t \alpha(s)+s \alpha(t)$

Then α necessarily factors uniquely through $\Omega_{S / R}$.
Example 3.2.2. Let $S=R\left[t_{1}, \ldots, t_{n}\right]$ for some commutative ring R. Then $d t_{1}, \ldots, d t_{n}$ generate $\Omega_{S / R}$ where $d\left(t_{1} t_{2}\right)=t_{2} d t_{1}+t_{1} d t_{2}$. In fact, $d t_{1}, \ldots, d t_{n}$ generate $\Omega_{S / R}$ freely. Indeed, define a homomorphism

$$
\begin{aligned}
\alpha: S & \rightarrow M=\bigoplus_{i=1}^{n} S \cdot d t_{i} \\
f & \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial t_{i}} d t_{i}
\end{aligned}
$$

then $\alpha\left(t_{i}\right)=d t_{i}$. The universal property of $\Omega_{S / R}$ then implies that α factors uniquely through $\Omega_{S / R}$, say via $\beta: \Omega_{S / R} \rightarrow M . \beta$ is necessarily surjective and M is free so it is infact an isomorphism.

Definition 3.2.3. Let $f: X \rightarrow Y$ be a morphism of affine schemes where $X=\operatorname{Spec}(S)$ and $Y=\operatorname{Spec}(R)$. Let $\alpha: R \rightarrow S$ be the homomorphism of rings that induces f and consider S as an R-algebra via α. We define the sheaf of relative differential forms of Y over X to be $\widetilde{\Omega_{S / R}}$.

If X and Y are arbitrary schemes then we may take an affine open cover $Y=\bigcup_{i} V_{i}$ and cover $f^{-1} V_{i}$ with affine schemes as $f^{-1} V_{i}=\bigcup_{j} U_{i, j}$. We then define $\Omega_{U_{i j} / V_{i}}$ as above and glue them together to define a global sheaf $\Omega_{X / Y}$.

Example 3.2.4. Let R be a ring, $S=R\left[t_{1}, \ldots, t_{n}\right], X=\mathbb{A}_{R}^{n}=\operatorname{Spec}(S)$ and $Y=\operatorname{Spec}(R)$. Let $f: X \rightarrow Y$ be the morphism of schemes induced by the ring homomorphism

$$
\begin{aligned}
\alpha: R & \rightarrow R\left[t_{1}, \ldots, t_{n}\right] \\
& r \mapsto r
\end{aligned}
$$

and consider S as an R-module via α. Then $\Omega_{X / Y}=\widetilde{\Omega_{S / R}}=\widetilde{\bigoplus_{i=1}^{n} S}=\bigoplus_{i=1}^{n} \mathcal{O}_{X}$
Example 3.2.5. Let R be a ring, $S=R\left[t_{0}, \ldots, t_{n}\right], X=\mathbb{P}_{R}^{n}=\operatorname{Proj}(S)$ and $Y=\operatorname{Spec}(R)$. Let $f: X \rightarrow Y$ be the morphism of schemes induced by the ring homomorphism

$$
\begin{aligned}
\alpha: R & \rightarrow R\left[t_{0}, \ldots, t_{n}\right] \\
& r \mapsto r
\end{aligned}
$$

and consider S as an R-module via α. We can cover X by open affine sets of the form $D_{+}\left(t_{0}\right), \ldots, D_{+}\left(t_{n}\right)$ where $D_{+}\left(t_{i}\right) \cong \mathbb{A}_{R}^{n}$. We can glue all the sheaves $\Omega_{D_{+}\left(t_{i}\right) / Y}$ together to get a sheaf $\Omega_{X / Y}$ such that $\Omega_{X / Y} \cong \bigoplus_{i=1}^{n} \mathcal{O}_{D_{+}}\left(t_{i}\right)$.
Theorem 3.2.6. Let R be a ring, $X=\mathbb{P}_{R}^{n}$ and $Y=\operatorname{Spec}(R)$. Then we have an exact sequence

$$
0 \longrightarrow \Omega_{X / Y} \longrightarrow \bigoplus_{i=1}^{n+1} \mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

Proof. Proof omitted (see handwritten Part III notes).
Example 3.2.7. With assumptions as before, we have that $\Omega(X / Y)=0$. Indeed, the Theorem gives us an injection

$$
\Omega_{X / Y}(X) \hookrightarrow \bigoplus_{i=1}^{n+1} \mathcal{O}_{X}(-1)(X)
$$

But by a question on an example sheet, we know the latter sheaf has no non-trivial global sections.

Example 3.2.8. Let $f: X \rightarrow Y$ be a closed immersion. Then $\Omega_{X / Y}=0$. Indeed, we may assume that X and Y are affine schemes so that $X=\operatorname{Spec}(S), Y=\operatorname{Spec}(R)$ and let f correspond to some ring homomorphism $\alpha: R \rightarrow S$ so that $S \cong R / \operatorname{ker} \alpha$. Since α is surjective, it follows that $\Omega_{S / R}=0$.

4 Cohomology

4.1 Results from Category Theory

Definition 4.1.1. By an abelian category we shall mean one of the following

1. AbGrp - Category of abelian groups and homomorphisms of groups.
2. $\operatorname{Mod}_{\mathbf{R}}$ - Category of modules over a commutative ring R and R-module homomorphisms.
3. $\operatorname{Sh}(X)$ - Category of sheaves of rings over a topological space X and morphisms of sheaves.
4. $\mathfrak{M o d}(X)$ - Category of \mathcal{O}_{X}-modules over a ringed space $\left(X, \mathcal{O}_{\mathcal{X}}\right)$ and morphisms of \mathcal{O}_{X}-modules.
5. $\mathfrak{Q c o}(X)$ - Category of quasi-coherent sheaves on a scheme X and morphisms of quasicoherent sheaves.

Definition 4.1.2. Let \mathcal{A} be an abelian category. By a complex we mean a sequence

$$
\ldots \longrightarrow A^{-1} \xrightarrow{d^{-1}} A^{0} \xrightarrow{d^{0}} A^{1} \xrightarrow{d^{1}} A^{2} \longrightarrow \ldots
$$

of objects and morphisms in \mathcal{A} such that im $d^{i-1} \subseteq \operatorname{ker} d^{i}$. We denote such a sequence by A^{\bullet}.

We define the $\boldsymbol{i}^{\boldsymbol{t h}}$-cohomology object of A^{\bullet} to be

$$
h^{i}\left(A^{\bullet}\right)=\frac{\operatorname{ker} d^{i}}{\operatorname{im} d^{i-1}}
$$

We say that A^{\bullet} is exact if $h^{i}\left(A^{\bullet}\right)=0$ for all i.
Definition 4.1.3. Let \mathcal{A} be an abelian category and A^{\bullet} and B^{\bullet} complexes in \mathcal{A}. We define a morphism of complexes to be morphisms $f_{i}: A^{i} \rightarrow B^{i}$ for each i such that the diagrams

commute for all i. Given a sequence

$$
0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0
$$

of complexes and morphisms between them, we say that such a sequence is exact if the sequence

$$
0 \longrightarrow A^{i} \longrightarrow B^{i} \longrightarrow C^{i} \longrightarrow 0
$$

is exact for every i.
Proposition 4.1.4. Let \mathcal{A} be an abelian category and

$$
0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0
$$

an exact sequence of complexes. Then we have a long exact sequence of cohomology groups

Definition 4.1.5. Let \mathcal{A} and \mathcal{B} be abelian categories. We say that a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is additive if for all $A, A^{\prime} \in \operatorname{ob} \mathcal{A}$ the map $\operatorname{Hom}\left(A, A^{\prime}\right) \rightarrow \operatorname{Hom}\left(F A, F A^{\prime}\right)$ is a homomorphism of abelian groups.

We say that F is left-exact if it is additive and for each exact sequence

$$
0 \longrightarrow A \longrightarrow A^{\prime} \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

we have an exact sequence

$$
0 \longrightarrow F A \longrightarrow F A^{\prime} \longrightarrow F A^{\prime \prime}
$$

Similarly, we have right-exact functors. We say that a functor is exact if it is both left and right exact.

Example 4.1.6. We have a left-exact functor

$$
\begin{aligned}
F: \mathbf{S h}(X) & \rightarrow \text { AbGrp } \\
\mathcal{F} & \mapsto \mathcal{F}(X)
\end{aligned}
$$

Definition 4.1.7. Let \mathcal{A} be an abelian category. We say that an object $I \in$ ob \mathcal{A} is injective if for every diagram

with first row exact there exists a morphism $A^{\prime} \rightarrow I$ extending the diagram to a commutative diagram.

Example 4.1.8. \mathbb{Q} is injective in Grp.
Definition 4.1.9. Let \mathcal{A} be an abelian category and $A \in$ ob \mathcal{A} an object. We define a injective resolution of A to be a sequence

$$
0 \longrightarrow A \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \ldots
$$

where each I^{i} is injective. We say that \mathcal{A} has enough injectives if every object admits an injective resolution.

Example 4.1.10. Let R be a commutative ring. Then $\operatorname{Mod}_{\mathbf{R}}$ has enough injectives.

Definition 4.1.11. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left-exact covariant functor of abelian categories. We define the rightderived functors $R^{i} F: \mathcal{A} \rightarrow \mathcal{B}$ in the following way. For all objects $A \in$ ob \mathcal{A} choose an injective resolution $I(A)$. Then we define $R^{i} F(A)=h^{i}(F I(A))$.

Theorem 4.1.12. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left-exact covariant functor of abelian categories. Then

1. $R^{i} F$ is independent of the choice of the injective resolutiont ${ }^{2}$.
2. $R^{0} F=F$
3. Every exact sequence

$$
0 \longrightarrow A \longrightarrow A^{\prime} \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

induces a long exact sequence

4. For every commutative diagram

we have a commutative diagram

Definition 4.1.13. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left-exact covariant functor of abelian categories. An object $J \in$ ob \mathcal{A} is said to be acyclic if $R^{i} F(J)=0$ for all $i>0$.

Theorem 4.1.14. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left-exact covariant functor of abelian categories. If

[^1]$$
0 \longrightarrow A J^{0} \longrightarrow J^{1} \longrightarrow \ldots
$$
is an exact sequence with J^{i} acyclic for all i then
$$
R^{i} F(A)=h^{i}\left(0 \rightarrow F\left(J^{0}\right) \rightarrow F\left(J^{1}\right) \rightarrow \ldots\right)
$$

Proof. Proof omitted.
Example 4.1.15. The following are all left-exact functors

1. $\mathbf{S h}(\mathbf{X}) \rightarrow$ AbGrp $: \mathcal{F} \mapsto \mathcal{F}(X)$
2. $\mathfrak{M o d}(X) \rightarrow$ AbGrp : $\mathcal{F} \mapsto \mathcal{F}(X)$
3. $\operatorname{Mod}_{\mathbf{R}} \rightarrow \operatorname{Mod}_{\mathbf{R}}: M \mapsto \operatorname{Hom}_{R}(L, M)$ for some commutative ring R and R-module L.
4. $\mathbf{S h}(X) \rightarrow \mathbf{S h}(Y): \mathcal{F} \mapsto f_{*} \mathcal{F}$ for some continuous function $f: X \rightarrow Y$

4.2 Cohomology of Sheaves

Proposition 4.2.1. Let X be a topological space. Then $\operatorname{Sh}(X)$ has products and the functor $F: \mathbf{S h}(X) \rightarrow \mathbf{A b G r p}$ reflects them.

Proof. This is immediate from the definitions.
Proposition 4.2.2. Let X be a topological space, \mathcal{G} a sheaf on X and $\left\{\mathcal{F}_{i}\right\}_{i \in I}$ a family of sheaves on X. Then

$$
\operatorname{Hom}\left(G, \prod_{i \in I} \mathcal{F}_{i}\right) \cong \prod_{i \in I} \operatorname{Hom}\left(\mathcal{G}, \mathcal{F}_{i}\right)
$$

Proof. Let $\pi_{j}: \prod_{i \in I} \mathcal{F}_{i} \rightarrow \mathcal{F}_{j}$ be the $j^{\text {th }}$ projection map that the product comes equipped with. Fix an open set $U \subseteq X$ and define

$$
\begin{aligned}
\varphi_{U}: \operatorname{Hom}\left(\mathcal{G}, \prod_{i \in I} \mathcal{F}_{i}\right)(U) & \rightarrow\left(\prod_{i \in I} \operatorname{Hom}\left(G, \mathcal{F}_{i}\right)\right)(U) \\
\psi & \mapsto\left(\left.\pi_{i}\right|_{U} \circ \psi\right)_{i \in I}
\end{aligned}
$$

One easily verifies that this is indeed an isomorphism of abelian groups and is compatible with restriction maps.

Theorem 4.2.3. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. Then $\mathfrak{M o d}(X)$ has enough injectives.
Proof. Fix an \mathcal{O}_{X}-module $\mathcal{F} \in \mathfrak{M o d}(X)$ and $x \in X$. Then \mathcal{F}_{x} is an \mathcal{O}_{x} module. Since $\operatorname{Mod}_{\mathcal{O}_{\mathbf{x}}}$ has enough injectives, we can find an injective \mathcal{O}_{x}-module and an injective homomorphism $\mathcal{F}_{x} \hookrightarrow I_{x}$. Let f_{x} denote the embedding of topological spaces $\{x\} \hookrightarrow X$. Then I_{x} can be viewed as a sheaf of modules on the singleton space $\{x\}$. Define $\mathcal{I}=\prod_{x \in X} f_{x_{*}} I_{x}$. We claim that \mathcal{I} is injective. First note that, for all sheaves $\mathcal{G} \in \operatorname{ob} \mathfrak{M o d}(X)$, Proposition 4.2 .2 implies that

$$
\operatorname{Hom}(\mathcal{G}, \mathcal{I})=\prod_{x \in X} \operatorname{Hom}\left(\mathcal{G}, f_{x_{*}} I_{x}\right)
$$

On the other hand, it is easy to see that we have an isomorphism

$$
\operatorname{Hom}_{\mathcal{O}_{\mathcal{X}}}\left(\mathcal{G}, f_{x_{*}} I_{x}\right)(X) \cong \operatorname{Hom}_{\mathcal{O}_{x}}\left(\mathcal{G}_{x}, I_{x}\right)
$$

given by sending a morphism of \mathcal{O}_{x}-modules to the corresponding homomorphism of stalks at x. Now consider a diagram

Descending to stalks, we have a diagram

But I_{x} is injective so there must exist a morphism completing the above diagram to a commutative diagram. By the aforementioned isomorphism of Hom-sets, we can lift this homomorphism of \mathcal{O}_{x}-modules to a morphism of \mathcal{O}_{X}-modules to complete the first diagram into a commuatative diagram. Hence \mathcal{I} is injective as claimed.

Now fix an object $\mathcal{F} \in \operatorname{ob} \mathfrak{M o d}(X)$. We want to construct an injective resolution for \mathcal{F}. By the previous discussion, we can choose an injective object \mathcal{I}_{0} so that we get a sequence

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{0}
$$

Now set $\mathcal{F}^{1}=\mathcal{I}^{0} / \mathcal{F}$ which is naturally an \mathcal{O}_{X}-module. This gives us a short exact sequence

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{0} \longrightarrow \mathcal{F}^{1} \longrightarrow 0
$$

We may choose an injective object \mathcal{I}^{1} together with an injective morphism $\mathcal{F}^{1} \rightarrow \mathcal{I}^{1}$ so that we get a sequence

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{0} \longrightarrow \mathcal{I}^{1}
$$

Continuing in this way, we can construct an injective resolution of \mathcal{F}. Hence $\mathfrak{M o d}(X)$ has enough injectives.

Corollary 4.2.4. Let X be a topological space. Then $\mathbf{~} \mathbf{~ h}(X)$ has enough injectives.
Proof. Let \mathcal{O}_{X} be the constant sheaf on X associated to \mathbb{Z}. Then $\left(X, \mathcal{O}_{X}\right)$ is a ringed space and any $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$ is naturally an \mathcal{O}_{X}-module. Applying the Theorem then allows us to construct injective resolutions of sheaves of rings on X.

Definition 4.2.5. Let X be a topological space and $\mathcal{F} \in \mathbf{S h}(X)$ a sheaf. Let $F: \mathbf{S h}(X) \rightarrow$ AbGrp be the functor sending a sheaf to its corresponding group of global sections. We define the $\boldsymbol{i}^{\boldsymbol{t h}}$-sheaf cohomology group to be

$$
H^{i}(X, \mathcal{F})=R^{i} F(\mathcal{F})
$$

Example 4.2.6. Let $\{x\}=X$ be a singleton space and $F: \operatorname{Sh}(X) \rightarrow$ AbGrp the functor which sends a sheaf to its associated global sections. We claim that $H^{i}(X, \mathcal{F})=0$ for all $i>0$. Indeed, fix a sheaf $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$. Choose an injective resolution

$$
0 \longrightarrow \mathcal{F} \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \ldots
$$

Taking stalks we get an exact sequence

$$
0 \longrightarrow \mathcal{F}_{x} \longrightarrow I_{x}^{0} \longrightarrow I_{x}^{1} \longrightarrow \ldots
$$

But for a singleton space, stalks coincide with global sections so we infact have an exact sequence

$$
0 \longrightarrow \mathcal{F}(X) \longrightarrow I^{0}(X) \longrightarrow I^{1}(X) \longrightarrow \ldots
$$

so that $H^{i}(X, \mathcal{F})=0$ for all $i>0$.
Example 4.2.7. Let K be a field and $S=K\left[t_{0}, t_{1}\right]$. Let $X=\mathbb{P}_{K}^{1}=\operatorname{Proj}(S)$. Let $x \in X$ be the point corresponding to the ideal $I=\left\langle t_{1}\right\rangle$. We have an exact sequence

$$
0 \longrightarrow I \longrightarrow S \longrightarrow S / I \longrightarrow 0
$$

which yields an exact sequence of \mathcal{O}_{X}-modules

$$
0 \longrightarrow \widetilde{I} \longrightarrow \widetilde{S} \longrightarrow \widetilde{S} / I \longrightarrow 0
$$

Letting $f:\{x\} \hookrightarrow X$ be the natural embedding and $\mathcal{I}=\widetilde{I}$ the ideal sheaf corresponding to $\{x\}$, this exact sequence is infact

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{X} \longrightarrow f_{*} \mathcal{O}_{\{x\}} \longrightarrow 0
$$

Note that we have an isomorphism

$$
\begin{array}{r}
S(-1) \cong I \\
a \mapsto a t_{1}
\end{array}
$$

so that we have an isomorphism $\mathcal{I} \cong \mathcal{O}_{X}(-1)$. The exact sequence then becomes

$$
0 \longrightarrow \mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X} \longrightarrow f_{*} \mathcal{O}_{\{x\}} \longrightarrow 0
$$

Passing to cohomology groups yields a long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(-1)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{0}\left(X, f_{*} \mathcal{O}_{\{x\}}\right) \\
& \longleftrightarrow H^{1}\left(X, \mathcal{O}_{X}(-1)\right) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{1}\left(X, f_{*} \mathcal{O}_{\{x\}}\right)
\end{aligned}
$$

Since $\mathcal{O}_{X}(-1)$ has no global sections, we have that $H^{0}\left(\mathcal{O}_{X}(-1)\right)=0$. Moreover, we have $H^{0}\left(X, \mathcal{O}_{X}\right)=H^{0}\left(X, f_{*} \mathcal{O}_{\{x\}}\right)=K$.

4.3 Flasque Sheaves

Definition 4.3.1. Let X be a topological space and $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$. We say that \mathcal{F} is flasque if for all open $U \subseteq X$, the restriction morphism $\mathcal{F}(X) \rightarrow \mathcal{F}(U)$ is a surjective homomorphism.

Theorem 4.3.2. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. If $\mathcal{I} \in \operatorname{ob} \mathfrak{M o d}(X)$ is injective then \mathcal{I} is flasque.

Proof. Fix an open set $U \subseteq X$ and let $t \in \mathcal{I}(U)$. We need to exhibit an element of $\mathcal{I}(X)$ that maps to t under the restriction morphism $\mathcal{I}(X) \rightarrow \mathcal{I}(U)$. Define a sheaf \mathcal{L}_{U} by

$$
\mathcal{L}_{U}(W)= \begin{cases}0 & \text { if } W \nsubseteq U \\ \mathcal{O}_{X}(W) & \text { if } W \subseteq U\end{cases}
$$

Clearly, \mathcal{L}_{U} is a subsheaf of \mathcal{O}_{X}. Now define a morphism of sheaves $\mathcal{L}_{U} \rightarrow \mathcal{I}$ by

$$
\varphi_{W}: \mathcal{L}_{U}(W) \rightarrow \mathcal{I}(W)= \begin{cases}0 & \text { if } W \nsubseteq U \\ \left.a \mapsto a t\right|_{W} & \text { if } W \subseteq U\end{cases}
$$

We then have a commutative diagram

with first row exact. Since \mathcal{I} is injective, there exists a morphism $\psi: \mathcal{O}_{X} \rightarrow \mathcal{I}$ completing the diagram to a commutative diagram. Since ψ is a morphism of sheaves, we have a commutative diagram

Chasing $1 \in \mathcal{O}_{X}(X)$ around the diagram shows that there must exist $s \in \mathcal{I}(X)$ mapping to $t \in \mathcal{I}(U)$ under $\left.\right|_{U}$ so that \mathcal{I} is flasque.

Theorem 4.3.3. Let X be a topological space and $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$ a flasque sheaf. Then $H^{i}(X, \mathcal{F})=0$ for all $i>0$.

Proof. Since $\mathcal{S}\langle(X)$ has enough injectives, we can find an injective sheaf \mathcal{I} and an inclusion morphism $\mathcal{F} \subseteq \mathcal{I}$. Setting $\mathcal{G}=\mathcal{I} / \mathcal{F}$ yields a short exact sequence

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I} \longrightarrow \mathcal{G} \longrightarrow 0
$$

We first claim that \mathcal{G} is flasque. In order to do this, we shall show that we have an exact sequence

$$
0 \longrightarrow \mathcal{F}(X) \longrightarrow \mathcal{I}(X) \xrightarrow{\alpha} \mathcal{G}(X) \longrightarrow 0
$$

Since taking global sections is left-exact, it suffices to show that α is surjective. Fix $t \in \mathcal{G}(X)$. Since $\varphi: \mathcal{I} \rightarrow \mathcal{G}$ is surjective, the corresponding homomorphism of stalks is also surjective. This implies that there exists an open neighbourhood $U \subseteq X$ and en element $s \in \mathcal{I}(U)$ such that $\alpha(s)=\left.t\right|_{U}$. Consider pairs $\left(U_{1}, s_{1}\right)$ and $\left(U_{2}, s_{2}\right)$ such that $s_{i} \in \mathcal{I}\left(U_{i}\right)$ and $\alpha\left(s_{i}\right)=\left.t\right|_{U_{i}}$. Then $\left.s_{1}\right|_{U_{1} \cap U_{2}}-\left.s_{2}\right|_{U_{1} \cap U_{2}}$ map to 0 under α. Since the sequence

$$
0 \longrightarrow \mathcal{F}\left(U_{1} \cap U_{2}\right) \longrightarrow \mathcal{I}\left(U_{1} \cap U_{2}\right) \longrightarrow \mathcal{G}\left(U_{1} \cap U_{2}\right)
$$

is exact, $\left.s_{1}\right|_{U_{1} \cap U_{2}}-\left.s_{2}\right|_{U_{1} \cap U_{2}} \in \mathcal{F}\left(U_{1}\right)$. Now, \mathcal{F} is flasque so there exists $r \in \mathcal{F}\left(U_{1} \cup U_{2}\right)$ such that $\left.r\right|_{U_{1} \cap U_{2}}=\left.s_{1}\right|_{U_{1} \cap U_{2}}-\left.s_{2}\right|_{U_{1} \cap U_{2}}$. Then $s_{2}+\left.r\right|_{U_{2}}$ and s_{1} are compatible on overlaps. Indeed

$$
\left.\left(s_{2}+\left.r\right|_{U_{2}}\right)\right|_{U_{1} \cap U_{2}}=\left.s_{2}\right|_{U_{1} \cap U_{2}}+\left.r\right|_{U_{1} \cap U_{2}}=\left.s_{2}\right|_{U_{1} \cap U_{2}}+\left.s_{1}\right|_{U_{1} \cap U_{2}}-\left.s_{2}\right|_{U_{1} \cap U_{2}}=\left.s_{1}\right|_{U_{1} \cap U_{2}}
$$

Since \mathcal{I} is a sheaf, they glue to give a section $s \in \mathcal{I}\left(U_{1} \cup U_{2}\right)$. By construction,

$$
\begin{aligned}
& \left.s\right|_{U_{1}}=\left.s_{1} \mapsto t\right|_{U_{1}} \\
& \left.s\right|_{U_{2}}=s_{2}+\left.\left.r\right|_{U_{2}} \mapsto t\right|_{U_{2}}
\end{aligned}
$$

and so $\left.s \mapsto t\right|_{U_{1} \cup U_{2}}$ under α. Now let

$$
\mathcal{A}=\left\{(U, s) \mid U \subseteq X \text { open }, s \in \mathcal{I}(U),\left.s \mapsto t\right|_{U}\right\}
$$

Define a partial order \leq on \mathcal{A} by declaring $(U, s) \leq\left(U^{\prime}, s^{\prime}\right)$ if and only if $U \subseteq U^{\prime}$ and $\left.s^{\prime}\right|_{U}=s$. By Zorn's Lemma, there exists a maximal element in \mathcal{A}, say (U, s). We claim that, in fact, $U=X$. Suppose, for a contradiction, that $U \neq X$. Choose $x \in X \backslash U$ and an open neighbourhood $x \in V \subseteq X$ and $l \in \mathcal{I}(V)$ mapping to $\left.t\right|_{V}$ under α. By the previous argumentation, we can construct $m \in \mathcal{I}(U \cup V)$ such that $\left.m\right|_{U}=s,\left.m\right|_{V}=l$ and $\left.m \mapsto t\right|_{U \cap V}$. But this contradicts the maximality of (U, s) so we must have that $U=X$ and so $s \in \mathcal{I}(X)$ is the desired element mapping to t under α. Thus α is surjective. Now consider the diagram

The exact same argumentation shows that β is surjective. Since \mathcal{I} is flasque, it follows that $\left.\right|_{W}: \mathcal{G}(X) \rightarrow \mathcal{G}(W)$ is surjective when \mathcal{G} flasque as claimed.

We now have a long exact sequence of cohomology groups

$$
\begin{aligned}
& 0 \longrightarrow H^{0}(X, \mathcal{F}) \longrightarrow H^{0}(X, \mathcal{I}) \longrightarrow H^{0}(X, \mathcal{G}) \\
& \longleftrightarrow H^{1}(X, \mathcal{F}) \longrightarrow H^{1}(X, \mathcal{I}) \longrightarrow H^{1}(X, \mathcal{G})
\end{aligned}
$$

Since \mathcal{I} is injective, it admits the trivial injective resolution

$$
0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{I} \longrightarrow 0 \longrightarrow \ldots
$$

so that $H^{i}(X, \mathcal{I})=0$ for all $i>0$. Since $\alpha: \mathcal{I}(X) \rightarrow \mathcal{G}(X)$ is surjective, it then follows that $H^{1}(X, \mathcal{F})=0$. From this it follows that $H^{1}(X, \mathcal{G}) \cong H^{i+1}(X, \mathcal{F})$ for all $i>0$. But \mathcal{G} is flasque so, by the same argumentation for \mathcal{F}, we see that $H^{1}(X, \mathcal{G})=0$ so that $H^{2}(X, \mathcal{F})=0$ by induction. Continuing in this way using induction we can show that $H^{i}(X, \mathcal{F})=0$ for all $i>0$.

Corollary 4.3.4. Let X be a topological space and $\mathcal{F} \in \mathrm{ob} \operatorname{Sh}(X)$ a flasque sheaf. Suppose that \mathcal{F} admits a flasque resolution

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{0} \longrightarrow \mathcal{I}^{1} \longrightarrow \ldots
$$

Then

$$
H^{i}(X, \mathcal{F})=h^{i}\left(0 \rightarrow \mathcal{I}^{0}(X) \rightarrow \mathcal{I}^{1}(X) \rightarrow \ldots\right)
$$

Proof. Since each \mathcal{I}^{j} is flasque, Theorem 4.3.3 implies that $H^{i}\left(X, \mathcal{I}^{j}\right)=0$ for all $i>0$, $j \geq 0$. Hence each \mathcal{I}^{j} is acyclic and so appealing to Theorem 4.1.14 proves the claim.

Corollary 4.3.5. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and \mathcal{F} an \mathcal{O}_{X}-module. Consider the functor

$$
\begin{aligned}
F: \mathfrak{M o d}(X) & \rightarrow \text { AbGrp } \\
G & \mapsto G(X)
\end{aligned}
$$

Then $H^{i}(X, \mathcal{F})$ is isomorphic to $R F^{i}(\mathcal{F})$. In other words, cohomology calculated in $\operatorname{Sh}(X)$ coincides with that calculated in $\mathfrak{M o d}(X)$.

Proof. Fix an injective resolution

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^{0} \longrightarrow \mathcal{I}^{1} \longrightarrow \ldots
$$

in $\mathfrak{M o d}(X)$. By Theorem 4.3 .2 this is infact a flasque resolution. Corollary 4.3.4 then implies the assertion of the Corollary.

4.4 Cohomology of Affine Schemes

Proposition 4.4.1. Let R be a Noetherian ring and I an injective R-module. Then \widetilde{I} is flasque.

Proof. Proof omitted.
Definition 4.4.2. Let X be a scheme and $b \in \mathcal{O}_{X}(X)$. Define

$$
D(b)=\left\{x \in X \mid b^{-1} \in \mathcal{O}_{x}\right\}
$$

Remark. If X is an affine scheme then this coincides with the previous definition of $D(b)$.
Proposition 4.4.3. Let X be a Noetherian scheme. Then X is affine if and only if there exists $b_{1}, \ldots, b_{n} \in \mathcal{O}_{X}(X)$ such that $D\left(b_{i}\right)$ are affine and $\mathcal{O}_{X}(X)=\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Proof. Proof omitted.
Definition 4.4.4. Let X be a scheme. We say that $x \in X$ is closed if $\{x\}$ is a closed subset of X.

Proposition 4.4.5. Let X be a Noetherian scheme and $Z \subseteq X$ a closed subset. Then there exists a closed point $x \in Z$.

Proof. Choose an open affine subset $U \subseteq X$ such that $U \cap Z \neq \varnothing$. If $Z \nsubseteq U$ then replace Z with $Z \cap(X \backslash U)$. Continuining in this way, we can construct a chain of closed subsets

$$
\cdots \subsetneq Z_{2} \subsetneq Z_{1}
$$

But X is Noetherian so this process must terminate and so we can find a closed subset of Z that is contained in U, overloading notation, we also call it Z. Then $Z=\operatorname{Spec}(R)$ for some ring R. Let \mathfrak{m} be any maximal ideal of R. Then $\{\mathfrak{m}\}$ is a closed subset of Z. Since Z is closed in X, it then follows that \mathfrak{m} is closed in Z so that \mathfrak{m} is a closed point of X.

Theorem 4.4.6. Let X be a Noetherian scheme. Then the following are equivalent:

1. X is affine.
2. $H^{i}(X, \mathcal{F})=0$ for all $i>0$ and quasi-coherent \mathcal{F}.
3. $H^{1}(X, \mathcal{I})=0$ for all coherent ideal sheafs \mathcal{I}.

Proof.
$(1) \Longrightarrow(2)$: First suppose that X is affine so that $X=\operatorname{Spec}(R)$ for some ring R. Fix a quasi-coherent sheaf $\mathcal{F} \in$ ob $\mathfrak{Q c o}(X)$ so that $\mathcal{F}=\widetilde{M}$ for some R-module M. Fix an injective resolution of M

$$
0 \longrightarrow M \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \ldots
$$

in $\operatorname{Mod}_{\mathbf{R}}$. Then

$$
0 \longrightarrow \widetilde{M} \longrightarrow \widetilde{I}^{0} \longrightarrow \widetilde{I}^{1} \longrightarrow \ldots
$$

is an flasque resolution of \mathcal{F} in $\mathfrak{M o d}(X)$ by Proposition 4.4.1. Corollary 4.3.4 then implies that

$$
\begin{aligned}
H^{i}(X, \mathcal{F}) & =h^{i}\left(0 \rightarrow \widetilde{I^{0}}(X) \rightarrow \widetilde{I}^{1}(X) \rightarrow \ldots\right) \\
& =h^{i}\left(0 \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots\right)
\end{aligned}
$$

which is exact. Hence $H^{i}(X, \mathcal{F})=0$ for all $i>0$.
$(2) \Longrightarrow(3)$: This assertion is trivial considering all coherent ideal sheafs are themselves quasi-coherent sheaves.
$(3) \Longrightarrow(1):$ Fix a closed point $x \in X$ and an open affine set $x \in U$. Let $Y=X \backslash U$ so that both Y and $Y \cup\{x\}$ are closed. We first claim that any closed set $Z \subseteq X$ can be endowed with the structure of a closed subscheme of X. Indeed, consider the sheaf

$$
\mathcal{I}_{Z}(W)=\left\{a \in \mathcal{O}_{X}(W) \mid a^{-1} \notin \mathcal{O}_{z} \text { for all } z \in W \cap Z\right\}
$$

If $W=\operatorname{Spec}(R)$ is open affine then $\left.\mathcal{I}_{Z}\right|_{W}=\widetilde{I}$ where $I \triangleleft R$ is the largest ideal of R such that $Z \cap W V(I)$. Hence \mathcal{I}_{Z} is quasi-coherent (in fact, it is coherent since X is Noetherian) and so Z has a closed subscheme structure.

We can apply this construction to the closed sets Y and $Y \cup\{x\}$ to get closed subschemes \mathcal{I}_{Y} and $\mathcal{I}_{Y \cup\{x\}}$. Since $Y \subseteq Y \cup\{x\}$, we have an inclusion of sheaves $\mathcal{I}_{Y \cup\{x\}} \subseteq \mathcal{I}_{Y}$. Letting $\mathcal{L}=\mathcal{I}_{Y} / \mathcal{I}_{Y \cup\{x\}}$ we have an exact sequence

$$
0 \longrightarrow \mathcal{I}_{Y \cup\{x\}} \longrightarrow \mathcal{I}_{Y} \longrightarrow \mathcal{L} \longrightarrow 0
$$

Since $\left.\mathcal{L}\right|_{X \backslash\{x\}}=0$, it follows that \mathcal{L} is the skyscraper sheaf associated to $\kappa(x)$, the residue field at x. By assumption, we have $H^{1}\left(X, \mathcal{I}_{Y \cup\{x\}}\right)=0$ so taking cohomology of the above exact sequence yields an

$$
0 \longrightarrow H^{0}\left(X, \mathcal{I}_{Y \cup\{x\}}\right) \longrightarrow H^{0}\left(X, \mathcal{I}_{Y}\right) \xrightarrow{\alpha} H^{0}(X, \mathcal{L}) \longrightarrow 0
$$

Since $H^{0}(X, \mathcal{L})=\kappa(x)$ and α is surjective so there exists $b \in H^{0}\left(X, \mathcal{I}_{Y}\right)$ such that $\alpha(b)=$ $1 \in \kappa(x)$. But this means that any representative of $\alpha(b)$ is invertible in \mathcal{O}_{x} and so $x \in D(b)$. By construction, $D(b) \subseteq U$. Hence for every closed point $x \in X$, there is a global section $b \in \mathcal{O}_{X}(X)$ such that $x \in D(b)$. Hence we can construct a family of global sections b_{i} such that each $D\left(b_{i}\right)$ is affine and $\bigcup_{i \in I} D\left(b_{i}\right)$ contains all closed points of X. In fact, $X=\bigcup_{i \in I} D\left(b_{i}\right)$. Indeed, if this were not the case then $X \backslash \bigcup_{i \in I} D\left(b_{i}\right)$ would be closed and would thus contain a closed point of X which is a contradiction. Since X is Noetherian, we may assume that there are only finitely many such b_{i}.

We now claim that $\mathcal{O}_{X}(X)$ is generated by the b_{i}. We will then be able to conclude that X is affine by Proposition 4.4.3.

Define a morphism of sheaves

$$
\begin{aligned}
\varphi_{U}:\left(\bigoplus_{i=1}^{n} \mathcal{O}_{X}\right)(U) & \rightarrow \mathcal{O}_{X}(U) \\
\left(s_{1}, \ldots, s_{n}\right) & \left.\mapsto \sum_{i=1}^{n} b_{i}\right|_{U} s_{i}
\end{aligned}
$$

Let \mathcal{F} be the kernel of this morphism. Then we have an exact sequence of sheaves

$$
0 \longrightarrow \mathcal{F} \longrightarrow \bigoplus_{i=1}^{n} \mathcal{O}_{X} \xrightarrow{\varphi} \mathcal{O}_{X} \longrightarrow 0
$$

φ is surjective since it is locally surjective. Indeed, for all $x \in X, \varphi_{x}$ is surjective since there exists some b_{i} which is invertible in \mathcal{O}_{x}. Now define a filtration of length n, denoted \mathcal{G}_{i}, by

$$
0 \subseteq \mathcal{O}_{X} \oplus 0 \cdots \oplus 0 \subseteq \mathcal{O}_{X} \oplus \mathcal{O}_{X} \oplus \cdots \oplus 0 \subseteq \cdots \subseteq \bigoplus_{i=1}^{n} \mathcal{O}_{X}
$$

Then, clearly, $\mathcal{G}_{i} / \mathcal{G}_{i-1} \cong \mathcal{O}_{X}$. Let $\mathcal{F}_{n}=\mathcal{F}$ and inductively define $\mathcal{F}_{i-1}=\operatorname{ker}\left(\mathcal{F}_{i} \rightarrow \mathcal{G}_{i} / \mathcal{G}_{i-1}\right)$. We then have exact sequences

$$
0 \longrightarrow \mathcal{F}_{i-1} \longrightarrow \mathcal{F}_{i} \longrightarrow \mathcal{F}_{i} \mathcal{F}_{i-1} \longrightarrow 0
$$

Moreover, $\mathcal{F}_{i} / \mathcal{F}_{i-1} \subseteq \mathcal{G}_{i} / \mathcal{G}_{i-1} \subseteq \mathcal{O}_{X}$ so that $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is a coherent ideal sheaf. By hypothesis, we then have that $H^{1}\left(X, \mathcal{F}_{i} / \mathcal{F}_{i-1}\right)=0$. Then $\operatorname{ker} \mathcal{F}_{0}=0$ whence $H^{1}\left(X, \mathcal{F}_{0}\right)=0$. By induction, it then follows that $H^{1}\left(X, \mathcal{F}_{i}\right)=0$ for all i and, in particular, $H^{1}(X, \mathcal{F})=0$. We then have a short exact sequence of cohomology groups

$$
0 \longrightarrow H^{0}(X, \mathcal{F}) \longrightarrow H^{0}\left(X, G_{n}\right) \xrightarrow{\varphi} H^{0}\left(X, \mathcal{O}_{X}\right) \longrightarrow 0
$$

Hence φ is surjective on global sections whence there exists $\left(s_{1}, \ldots, s_{n}\right) \in G_{n}(X)$ such that $1=\sum_{i} b_{i} s_{i}$ and so $\mathcal{O}_{X}(X)=\left(b_{1}, \ldots, b_{n}\right)$.

4.5 Čech Cohomology

Definition 4.5.1. Let X be a topological space and $\mathcal{F} \in \operatorname{Sh}(X)$ a sheaf. Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open covering of X where I is a well-ordered set. Given $i_{0}, \ldots, i_{p} \in I$, let $U_{i_{0}, \ldots, i_{p}}=$ $U_{i_{0}} \cap \cdots \cap U_{i_{p}}$. We define

$$
C^{p}(\mathcal{U}, \mathcal{F})=\prod_{i_{0}<\cdots<i_{p}} \mathcal{F}\left(U_{i_{0}, \ldots, i_{p}}\right)
$$

Moreover, we define a map $d^{p}: C^{p}(\mathcal{U}, \mathcal{F}) \rightarrow C^{p+1}(\mathcal{U}, \mathcal{F})$ given by sending $\left(s_{i_{0}, \ldots, i_{p}}\right)$ to ($t_{i_{0}, \ldots, i_{p+1}}$) where

$$
t_{i_{0}, \ldots, i_{p+1}}=\left.\sum_{l=0}^{p+1}(-1)^{l} s_{i_{0}, \ldots, \hat{l}, \ldots, i_{p+1}}\right|_{i_{0}, \ldots, i_{p+1}}
$$

where $\widehat{i_{l}}$ is understood to mean that the i_{l}-index is dropped. It can be checked that $d^{p+1} d^{p}=$ 0 so that this forms a cochain complex of abelian groups which we refer to as a Čech complex. We define the $p^{\text {th }}$ C Cech cohomology group $\check{H}^{p}(\mathcal{U}, \mathcal{F})$ to be the $p^{\text {th }}$ cohomology group of the aforementioned complex.

Proposition 4.5.2. Let X be a topological space and $\mathcal{F} \in \operatorname{Sh}(X)$ a sheaf. Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open covering of X. Then

$$
\check{H}^{0}(\mathcal{U}, \mathcal{F}) \cong \mathcal{F}(X) \cong H^{0}(X, \mathcal{F})
$$

Proof. By definition, $\check{H}^{0}(\mathcal{U}, \mathcal{F})=\operatorname{ker} d^{0}$. Now, $C^{0}(\mathcal{U}, \mathcal{F})=\prod_{i \in I} \mathcal{F}\left(U_{i}\right)$ and $C^{1}(\mathcal{U}, \mathcal{F})=$ $\prod_{i<j} \mathcal{F}\left(U_{i} \cap U_{j}\right)$. Then

$$
\begin{aligned}
d^{1}: \prod_{i \in I} \mathcal{F}\left(U_{i}\right) & \rightarrow \prod_{i<j} \mathcal{F}\left(U_{i} \cap U_{j}\right) \\
\left(s_{i}\right) & \mapsto\left(\left.\left[s_{i}-s_{j}\right]\right|_{U_{i} \cap U_{j}}\right)
\end{aligned}
$$

So that $\operatorname{ker} d^{0}=\left\{\left(s_{i}\right)\left|s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}\right\}$. But this is exactly the global sections of \mathcal{F} since it is a sheaf.

Example 4.5.3. Let K be a field and $X=\mathbb{P}_{K}^{1}=\operatorname{Proj} K\left[t_{0}, t_{1}\right]$. Consider the open cover $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ where $U_{0}=D_{+}\left(t_{0}\right), U_{1}=D_{+}\left(t_{1}\right)$. The Čech complex of \mathcal{O}_{X} is

$$
C^{\bullet}\left(\mathcal{U}, \mathcal{O}_{X}\right): 0 \longrightarrow C^{0}\left(\mathcal{U}, \mathcal{O}_{X}\right) \longrightarrow C^{1}\left(\mathcal{U}, \mathcal{O}_{X}\right) \longrightarrow C^{2}\left(\mathcal{U}, \mathcal{O}_{X}\right) \longrightarrow \ldots
$$

Now, $C^{p}\left(\mathcal{U}, \mathcal{O}_{X}\right)=0$ for all $p \geq 2$ since there are only two sets in the open cover. Moreover,

$$
C^{0}\left(\mathcal{U}, \mathcal{O}_{X}\right)=\mathcal{O}_{X}\left(U_{0}\right) \oplus \mathcal{O}_{X}\left(U_{1}\right)=K\left[t_{0}, t_{1}\right]_{\left(t_{0}\right)} \oplus K\left[t_{0}, t_{1}\right]_{\left(t_{1}\right)}
$$

and

$$
C^{1}\left(\mathcal{U}, \mathcal{O}_{X}\right)=\mathcal{O}_{X}\left(U_{0} \cap U_{1}\right)=\mathcal{O}_{X}\left(D_{+}\left(t_{0} t_{1}\right)\right)=K\left[t_{0}, t_{1}\right]_{\left(t_{0} t_{1}\right)}
$$

Writing $u=t_{1} / t_{0}$ and $v=t_{0} / t_{1}$, we first claim that $K\left[t_{0}, t_{1}\right]_{\left(t_{0}\right)} \cong K[u]$. Indeed, define a homomorphism

$$
\begin{aligned}
\varphi: K\left[t_{0}, t_{1}\right]_{\left(t_{0}\right)} & \rightarrow K[u] \\
{\left[\frac{\sum_{i+j=n} a_{i j} t_{0}^{i} t_{1}^{j}}{t_{0}^{n}}\right] } & \mapsto \sum_{i+j=n} a_{i j} u^{j}
\end{aligned}
$$

which is clearly well-defined, surjective and injective. The Čech complex is then just

$$
\begin{gathered}
0 \longrightarrow K[u] \oplus K[v] \xrightarrow{d^{0}} K[u, 1 / u] \longrightarrow 0 \\
(f, g) \longmapsto f(u)-g(1 / u)
\end{gathered}
$$

so that

$$
\begin{aligned}
\operatorname{ker} d^{0} & =\{(f, g) \mid f(u)-g(1 / u)=0\} \\
& =\{(f, g) \mid f=g \in K\} \cong K
\end{aligned}
$$

Since d^{0} is surjective, it then follows that $\check{H}^{p}\left(\mathcal{U}, \mathcal{O}_{X}\right)=0$.
Example 4.5.4. Let K be a field, $X=\mathbb{P}_{K}^{1}=\operatorname{Proj} K\left[t_{0}, t_{1}\right]$ and $Y=\operatorname{Spec} K$. Consider the open cover $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ where $U_{0}=D_{+}\left(t_{0}\right), U_{1}=D_{+}\left(t_{1}\right)$. The Čech complex of $\Omega_{X / Y}$ is

$$
C^{\bullet}\left(\mathcal{U}, \Omega_{X / Y}\right): 0 \longrightarrow C^{0}\left(\mathcal{U}, \Omega_{X / Y}\right) \longrightarrow C^{1}\left(\mathcal{U}, \Omega_{X / Y}\right) \longrightarrow C^{2}\left(\mathcal{U}, \Omega_{X / Y}\right) \longrightarrow \ldots
$$

Now, $C^{p}\left(\mathcal{U}, \Omega_{X / Y}\right)=0$ for all $p \geq 2$ since there are only two sets in the open cover. Moreover, writing $u=t_{1} / t_{0}$ and $v=t_{0} / t_{1}$, we have

$$
C^{0}\left(\mathcal{U}, \Omega_{X / Y}\right)=\Omega_{X / Y}\left(U_{0}\right) \oplus \Omega_{X / Y}\left(U_{1}\right)=K[u] d u \oplus K[v] d v
$$

and

$$
C^{1}\left(\mathcal{U}, \mathcal{O}_{X}\right)=\mathcal{O}_{X}\left(U_{0} \cap U_{1}\right)=K[u, 1 / u] d u
$$

so that d^{0} is the map

$$
(f d u, g d v) \mapsto f(u) d u+\frac{1}{u^{2}} g(1 / u) d u
$$

so that $\operatorname{ker} d^{0}=0$ whence $\check{H}^{p}\left(\mathcal{U}, \Omega_{X / Y}\right)=0$. Moreover, $\operatorname{im} d^{0}$ contains $u^{r} \cdot d u$ for all $r \in \mathbb{Z}$ except $r=-1$ so that $1 / u d u \notin \operatorname{im} d^{0}$. THen

$$
\check{H}^{1}\left(\mathcal{U}, \Omega_{X / Y}\right)=\frac{\operatorname{ker} d^{1}}{\operatorname{im} d^{0}}=\frac{K[u, 1 / u] d u}{\operatorname{im} d^{0}} \cong K \frac{1}{u} d u \cong K
$$

Furthermore, $\check{H}^{p}\left(\mathcal{U}, \Omega_{X / Y}\right)=0$ for all $p>1$.
Example 4.5.5. Let K be a field, $X=\mathbb{P}_{K}^{1}=\operatorname{Proj} K\left[t_{0}, t_{1}\right]$ and \mathcal{F} the constant sheaf associated to \mathbb{Z}. Consider the open cover $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ where $U_{0}=D_{+}\left(t_{0}\right), U_{1}=D_{+}\left(t_{1}\right)$. The Čech complex of \mathcal{F} is

$$
C^{\bullet}(\mathcal{U}, \mathcal{F}): 0 \longrightarrow C^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{2}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

Now, $C^{p}(\mathcal{U}, \mathcal{F})=0$ for all $p \geq 2$ since there are only two sets in the open cover. Moreover,

$$
C^{0}(\mathcal{U}, \mathcal{F})=\mathcal{F}\left(U_{0}\right) \oplus \mathcal{F}\left(U_{1}\right)=\mathbb{Z} \oplus \mathbb{Z}
$$

and

$$
C^{1}(\mathcal{U}, \mathcal{F})=\mathcal{F}\left(U_{0} \cap U_{1}\right)=\mathbb{Z}
$$

so that d^{0} is the map

$$
(m, n) \mapsto m-n
$$

Now, $\operatorname{ker} d^{0}=\{(m, n) \mid m=n\}=\mathbb{Z}$ whence $\check{H}^{0}(\mathcal{U}, \mathcal{F})=\mathcal{F}(X)=\mathbb{Z}$. Moreover, d^{0} is surjective so that $\breve{H}^{p}(\mathcal{U}, \mathcal{F})$ for all $p>0$.
Example 4.5.6. Let $X=S^{1}$ be endowed with the subspace topology from \mathbb{R}. Let $\alpha=(0,1)$ and $\beta=(1,0)$ so that $\mathcal{U}=\{U, V\}$ where $U=X \backslash\{\alpha\}$ and $V=X \backslash\{\beta\}$ form an open cover of X. Let \mathcal{F} be the constant sheaf on X associated to \mathbb{Z}. The Čech complex of \mathcal{F} is

$$
C^{\bullet}(\mathcal{U}, \mathcal{F}): 0 \longrightarrow C^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{2}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

Now, $C^{p}(\mathcal{U}, \mathcal{F})=0$ for all $p \geq 2$ since there are only two sets in the open cover. Moreover,

$$
C^{0}(\mathcal{U}, \mathcal{F})=\mathcal{F}\left(U_{0}\right) \oplus \mathcal{F}\left(U_{1}\right)=\mathbb{Z} \oplus \mathbb{Z}
$$

and

$$
C^{1}(\mathcal{U}, \mathcal{F})=\mathcal{F}\left(U_{0} \cap U_{1}\right)=\mathbb{Z} \oplus \mathbb{Z}
$$

so that d^{0} is the map

$$
(m, n) \mapsto(m-n, m-n)
$$

We then see that ker $d^{0} \cong \mathbb{Z}$ and $\operatorname{im} d^{0} \cong \mathbb{Z}$. So $\check{H}^{0}(X, \mathcal{F})=\mathbb{Z}$ and also $\check{H}^{1}(\mathcal{U}, \mathcal{F})=\mathbb{Z}$. Finally, $\check{H}^{p}(\mathcal{U}, \mathcal{F})=0$ for all $p>1$.

4.6 Cohomology of Schemes

Definition 4.6.1. Let X be a topological space, $\mathcal{F} \in \operatorname{Sh}(X)$ a sheaf and $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ an open cover of X for some well-ordered set I. Let $U_{i_{0}, \ldots, i_{p}}=U_{i_{0}} \cap \cdots \cap U_{i_{p}}$ and let $f_{i_{0}, \ldots, i_{p}}$ denote the inclusion map $U_{i_{0}, \ldots, i_{p}} \hookrightarrow X$. Let $\mathcal{F}_{i_{0}, \ldots, i_{p}}$ denote the sheaf $\left(f_{i_{0}, \ldots, i_{p}}\right)_{*}\left(\left.\mathcal{F}\right|_{U_{i_{0}}, \ldots, i_{p}}\right)$. Define

$$
\mathcal{C}^{p}(\mathcal{U}, \mathcal{F})=\prod_{i_{0}<\ldots<i_{p}} \mathcal{F}_{i_{0}, \ldots, i_{p}}
$$

and a map

$$
d^{p}: \mathcal{C}^{p}(\mathcal{U}, \mathcal{F}) \rightarrow \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})
$$

pointwise on open $U \subseteq X$ by sending $\left(s_{i_{0}, \ldots, i_{p}}\right)$ to $\left(t_{i_{0}, \ldots, i_{p+1}}\right)$ where

$$
t_{i_{0}, \ldots, i_{p+1}}=\left.\sum_{l=0}^{p+1}(-1)^{l} s_{i_{0}, \ldots, \hat{l}_{l}, \ldots, i_{p+1}}\right|_{U_{i_{0}}, \ldots, i_{p+1} \cap U}
$$

We can similarly check that $d^{p+1} d^{p}=0$ so that we get a complex

$$
\mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{F}): 0 \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{0}} \mathcal{C}^{1}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{1}} \ldots
$$

We extend this to a complex

$$
\begin{gathered}
\mathcal{C}_{\bullet}(\mathcal{U}, \mathcal{F}): 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{0}} \mathcal{C}^{1}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{1}} \ldots \\
s \in \mathcal{F}(W) \longmapsto\left(\left.s\right|_{W \cap U_{i}}\right)
\end{gathered}
$$

called the sheaf Čech complex.
Lemma 4.6.2. Let X be a topological space, $\mathcal{F} \in \mathbf{S h}(X)$ a sheaf and $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ an open cover of X for some well-ordered set I. The the sheaf Cech complex of \mathcal{F} is exact.

Proof. We first claim that

$$
0 \longrightarrow \mathcal{F} \xrightarrow{d^{-1}} \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{0}} \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})
$$

is exact by the definition of a sheaf. Indeed, fix an open $W \subseteq X$ and suppose that $\left(\left.s\right|_{W \cap U_{i}}\right)=$ 0 . Since $W \cap U_{i}$ is an open cover of W, the zero sections glue together uniquely to give the zero section in $\mathcal{F}(W)$ so d^{-1} must be injective. To show exactness at $\mathcal{C}^{0}(\mathcal{U}, \mathcal{F})$, we need to show that $\operatorname{ker} d^{0} \subseteq \operatorname{im} d^{-1}$. To this end, fix an open $W \subseteq X$. Suppose that $\left(s_{i}\right) \in \operatorname{ker} d^{0}$. Then by definition of the differential, we have that

$$
\left.\left(s_{i}-s_{j}\right)\right|_{U_{i, j} \cap W}=0
$$

But then $\left.s_{i}\right|_{U_{i} \cap U_{j} \cap W}=\left.s_{j}\right|_{U_{i} \cap U_{j} \cap W}$ so that the s_{i} are compatible on overlaps of the open cover $U_{i} \cap W$ of W. The sheaf axiom then implies that the s_{i} glue together to give a unique $s \in \mathcal{F}_{W}$ such that $\left.s\right|_{U_{i} \cap W}=s_{i}$. But then $\left(s_{i}\right) \in \operatorname{im} d^{-1}$ by the definition of d^{-1}.

We now want to show that

$$
\mathcal{C}^{p-1}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{p-1}} \mathcal{C}^{p}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{p}} \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})
$$

for all $p \geq 1$. It suffices to show this on the level of stalks. In other words, for all $x \in X$, we need to show that

$$
\mathcal{C}^{p-1}(\mathcal{U}, \mathcal{F})_{x} \xrightarrow{d_{x}^{p-1}} \mathcal{C}^{p}(\mathcal{U}, \mathcal{F})_{x} \xrightarrow{d_{x}^{p}} \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})_{x}
$$

is exact. Since we are working with stalks, we can throw away any U_{i} for which $x \notin U_{i}$ and assume that $X=U_{0}=\cdots=U_{n}$ by replacing X and each U_{i} with $\bigcap_{i=1}^{n} U_{i}$. Now define a map

$$
\begin{aligned}
e^{p}: \mathcal{C}^{p}(\mathcal{U}, \mathcal{F})_{x} & \rightarrow \mathcal{C}^{p-1}(\mathcal{U}, \mathcal{F})_{x} \\
{\left[W,\left(s_{i_{0}, \ldots, i_{p}}\right)\right] } & \mapsto\left[W,\left(t_{i_{0}, \ldots, i_{p-1}}\right)\right]
\end{aligned}
$$

where

$$
t_{i_{0}, \ldots, i_{p-1}}= \begin{cases}s_{j, i_{0}, \ldots, i_{p-1}} & \text { if } i_{0} \neq j, j=\min I \\ 0 & \text { if } i_{0}=j\end{cases}
$$

Now, let $\delta_{i_{0}, j}=0$ if $i_{0}=j$ and 1 otherwise, then

$$
\begin{aligned}
\left(d_{x}^{p-1} e^{p}+e^{p+1} d_{x}^{p}\right)\left(\left[W, s_{i_{0}, \ldots, i_{p}}\right]\right) & =d_{x}^{p-1} e^{p}\left(\left[W, s_{i_{0}, \ldots, i_{p}}\right]\right)+e^{p+1} d_{x}^{p} \\
& =d_{x}^{p-1}\left(\delta_{i_{0}, j}\left[W, s_{0, i_{0}, \ldots, i_{p-1}}\right)\right]+e^{p+1} \sum_{l=0}^{p+2}(-1)^{l}\left[W, s_{i_{0}, \ldots, \hat{\iota}_{l}, i_{p+1}}\right] \\
& =\delta_{i_{0}, j} \sum_{m=0}^{p}(-1)^{m}\left[W, s_{0, i_{0}, \ldots, \hat{i}_{m}, \ldots, i_{p}}\right]+\delta_{i_{0}, j} \sum_{l=0}^{p+2}(-1)^{l}\left[W, s_{0, i_{0}, \ldots, \hat{l}_{l}, \ldots, i_{p+1}}\right] \\
& =\left[W, s_{i_{0}, \ldots, i_{p}}\right]
\end{aligned}
$$

so that $d_{x}^{p-1} e^{p}+e^{p+1} d_{x}^{p}=\mathrm{id}$. Now fix $\left[W, s_{i_{0}, \ldots, i_{p}}\right] \in \operatorname{ker} d_{x}^{p}$. Applying this formula, we have

$$
d_{x}^{p-1} e^{p}\left(\left[W, s_{i_{0}, \ldots, i_{p}}\right]\right)=\left[W, s_{i_{0}, \ldots, i_{p}}\right]
$$

so that $\left[W, s_{i_{0}, \ldots, i_{p}}\right] \in \operatorname{im} d_{x}^{p-1}$.
Theorem 4.6.3. Let X be a topological space and $\mathcal{U}=\left\{U_{i}\right\}$ a finite open cover of \mathcal{X}. If $\mathcal{F} \in \operatorname{Sh}(X)$ is flasque then

$$
\check{H}^{p}(\mathcal{U}, \mathcal{F})=0
$$

for all $p>0$.
Proof. Consider the Čech complex resolution of \mathcal{F}

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

Since \mathcal{F} is flasque, so is $\left.\mathcal{F}\right|_{U_{i_{0}, \ldots, i_{p}}}$ and, in particuar, $\mathcal{F}_{i_{0}, \ldots, i_{p}}$ is also flasque. Hence $\mathcal{C}^{p}(\mathcal{U}, \mathcal{F})$ is flasque for all $p \geq 0$ whence the above is a flasque resolution of \mathcal{F}. By Corollary 4.3.4 we know that $H^{p}(X, \mathcal{F})$ is calculated on the sequence

$$
0 \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \ldots
$$

On the other hand, the cohomology of the first sequence is $\check{H}^{p}(\mathcal{U}, \mathcal{F})$ by definition and so $\check{H}^{p}(\mathcal{U}, \mathcal{F})=H^{p}(\mathcal{U}, \mathcal{F})$ by definition. But the latter is 0 by Theorem 4.3.3.

Theorem 4.6.4. Let X be a Noetherian scheme such that the intersection of any two open affine subschemes is again affine. Let $\mathcal{U}=\left\{U_{i}\right\}$ be a finite open affine cover of X. Then

$$
\check{H}^{p}(\mathcal{U}, \mathcal{F}) \cong H^{p}(X, \mathcal{F})
$$

for all quasi-coherent sheaves \mathcal{F} on X.
Proof. Consider the Čech resolution of \mathcal{F}

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

We first claim that $H^{l}\left(X, \mathcal{C}^{p}(\mathcal{U}, \mathcal{F})\right)=0$ for all $p \geq 0$ and $l>0$. It is in fact enough to show that $H^{l}\left(X, \mathcal{F}_{i_{0}, \ldots, i_{p}}\right)=0$ for all $p \geq 0$ and $l>0$. By hypothesis, $U_{i_{0}, \ldots, i_{p}}$ is affine so Theorem 4.4.6 implies that

$$
H^{l}\left(U_{i_{0}, \ldots, i_{p}},\left.\mathcal{F}\right|_{U_{i_{0}, \ldots, i_{p}}}\right)=0
$$

for all $p>0$ and $l \geq 0$. By Proposition 4.4.1, we can choose a flasque resolution

$$
\left.0 \longrightarrow \mathcal{F}\right|_{U_{i_{0}, \ldots, i_{p}}} \longrightarrow \mathcal{I}^{0} \longrightarrow \mathcal{I}^{1} \longrightarrow \ldots
$$

where each \mathcal{I}^{j} is quasi-coherent. Then $\left(f_{i_{0}, \ldots, i_{p}}\right)_{*} \mathcal{I}^{j}$ are flasque and quasi-coherent. Then

$$
0 \longrightarrow \mathcal{F}_{i_{0}, \ldots, i_{p}} \longrightarrow\left(f_{\left.i_{0}, \ldots, i_{p}\right)}\right)_{*} \mathcal{I}^{0} \longrightarrow\left(f_{\left.i_{0}, \ldots, i_{p}\right)}\right)_{*} \mathcal{I}^{1} \longrightarrow \ldots
$$

is also a flasque resolution of $\mathcal{F}_{i_{0}, \ldots, i_{p}}$. Hence, $H^{l}\left(X, \mathcal{F}_{i_{0}, \ldots, i_{p}}\right.$ are calculated by th complex

$$
0 \longrightarrow\left(f_{\left.i_{0}, \ldots, i_{p}\right)}\right)_{*} \mathcal{I}^{0}(X) \longrightarrow\left(f_{\left.i_{0}, \ldots, i_{p}\right)}\right)_{*} \mathcal{I}^{1}(X) \longrightarrow \ldots
$$

But this is the same as the complex

$$
0 \longrightarrow \mathcal{I}^{0}\left(U_{i_{0}, \ldots, i_{p}}\right) \longrightarrow \mathcal{I}^{1}\left(U_{i_{0}, \ldots, i_{p}}\right) \longrightarrow \ldots
$$

which calculates the cohomology of $H^{l}\left(U_{i_{0}, \ldots, i_{p}},\left.\mathcal{F}\right|_{U_{i_{0}, \ldots, i_{p}}}\right.$. But this is 0 by Theorem 4.4.6. So $H^{l}\left(X, \mathcal{F}_{i_{0}, \ldots, i_{p}}\right)=0$ as claimed. This shows that the $\mathcal{C}^{p}(\mathcal{U}, \mathcal{F})$ are acyclic with respect to the global section functor so by Theorem 4.1.14 we can calculate $H^{l}(X, \mathcal{F})$ using the Čech complex of \mathcal{F}. This is given by the cohomology of

$$
0 \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \ldots
$$

which is just the ordinary Čech complex

$$
0 \longrightarrow C^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

But we know that the cohomology of this is $H^{p}(X, \mathcal{F})=\check{H}^{p}(X, \mathcal{F})$ so we are done.
Remark. We give a remark on when the conditions of the previous Theorem hold. Let $f: X \rightarrow Y$ be a morphism of schemes with $Y=\operatorname{Spec}(R)$ affine. We say that f is projective if there exists a commutative diagram

where g is a closed immersion. If Y is not affine then we can define \mathbb{P}^{n} over open affine subsets and glue them together. We say that f is quasi-projective if there exists a commutative diagram

with g an open immersion. Now assume that R is Noetherian. Then the intersection of any two open affine subschemes in X is again affine.

5 Cohomology of Projective Schemes

Theorem 5.0.1. Let K be a field and $X=\mathbb{P}_{K}^{n}=\operatorname{Proj}(S)$ where $S=K\left[t_{0}, \ldots, t_{n}\right]$. Then

1. $H^{0}\left(X, \mathcal{O}_{X}(d)\right)$ is the K-vector space generated by all monomials in t_{0}, \ldots, t_{n} of degree d.
2. $\operatorname{dim}_{K} H^{n}\left(X, \mathcal{O}_{X}(d)\right)=\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(-n-1-d)\right)$.
3. $H^{p}\left(X, \mathcal{O}_{X}(d)\right)=0$ for all $p>n$.
4. $H^{p}\left(X, \mathcal{O}_{X}(d)\right)=0$ for all $0<p<n$.

Proof.
Part 1: We have that

$$
H^{0}\left(X, \mathcal{O}_{X}(d)\right)=\mathcal{O}_{X}(d)(X) \cong\left\{\left(s_{i}\right)\left|s_{i} \in \mathcal{O}_{X}(d)\left(U_{i}\right), s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}\right\}
$$

where $U_{i}=D_{+}\left(t_{i}\right)$. Now, $\mathcal{O}_{X}(d)\left(U_{i}\right)=S(d)_{\left(t_{i}\right)}$ so that $s_{i} \in \mathcal{O}_{X}(d)\left(U_{i}\right)$ satisfies $s_{i}=\frac{f_{i}}{t_{i}^{i_{i}}}$ where f_{i} is homogeneous of degree $d+e_{i}$ in S. Then

$$
\begin{aligned}
\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}} & \Longleftrightarrow \frac{f_{i}}{t_{i}^{e_{i}}}=\frac{f_{j}}{t_{j}^{e_{j}}} \in S(D)_{\left(t_{1} t_{2}\right)} \\
& \Longleftrightarrow \frac{f_{i}}{t_{i}^{e_{i}}}=\frac{f_{j}}{t_{j}^{e_{j}}} \in S_{\left(t_{1} t_{2}\right)} \\
& \Longleftrightarrow f_{i} t_{j}^{t_{j}}=f_{j} t_{i}^{e_{i}} \in S
\end{aligned}
$$

in S. Now, S is a unique factorisation domain so that $t_{j}^{e_{j}} \mid f_{j}$ and $t_{i}^{e_{i}} \mid f_{i}$. Hence there exists a homogeneous $g \in S$ of degree d such that $g=\frac{f_{i}}{t_{i}^{\epsilon_{i}}}=s_{i}$ for all i.

Conversely, given any homogeneous $g \in S$ of degree d, we have a section $\left(s_{i}\right)$ in $\mathcal{O}_{X}(d)(X)$ given by setting $s_{i}=\frac{g}{1}$.
Part 2: We shall only prove the case where $-d-n-1 \leq 0$. Now, the group $H^{n}\left(X, \mathcal{O}_{X}(d)\right)$ is calculated by the Čech complex

$$
\ldots \longrightarrow C^{n-1}\left(\mathcal{U}, \mathcal{O}_{X}(d)\right) \xrightarrow{d^{n-1}} C^{n}\left(\mathcal{U}, \mathcal{O}_{X}(d)\right) \xrightarrow{d^{n}} 0
$$

which is just

$$
\ldots \longrightarrow \prod_{i_{0}<\cdots<i_{n-1}} S(d)_{\left(t_{i_{0}} \ldots t_{i_{n-1}}\right)} \xrightarrow{d^{n-1}} S(d)_{\left(t_{1} \ldots t_{n}\right)} \xrightarrow{d^{n}} 0
$$

where $\mathcal{U}=\left\{D_{+}\left(t_{i}\right)\right\}_{i}$. We need to calculate im d^{n-1}. To this end, fix $\sigma \in S(d)_{t_{0} \ldots t_{n}}$. We may assume that

$$
\sigma=\frac{t_{0}^{m_{0}} \ldots t_{n}^{m_{n}}}{\left(t_{0} \ldots t_{n}\right)^{l}}
$$

where $\sum_{i=1}^{n} m_{i}=d+(n+1) l$. We want to determine when such a σ is not in im d^{n-1}. If there is an i for which $m_{i} \geq l$ then we would be able to cancel such a t_{i} from the denominator so that σ would be in the image of the factor of $C^{n-1}(\mathcal{U}, \mathcal{F})$ corresponding to a missing U_{i}. Moreover, we can assume that $m_{i}=0$ for some i, otherwise we may decrease l. Then

$$
d+(n+1) l=\sum_{i=0}^{n-1} m_{i} \leq n(l-1)=n l-n
$$

so that $d+l \leq-n$ and so $l \leq-n-d$. But by assumption we have $-n-d \leq 1$ so that $l=1$. Since each $m_{i}<l$, the only possibility is then $\sigma=\frac{1}{t_{0} \ldots t_{n}}$ which corresponds to the case where $d=-n-1$. But $\sigma \notin \operatorname{im} d^{n-1}$ so we have

$$
\begin{aligned}
H^{n}\left(X, \mathcal{O}_{X}(d)\right) & = \begin{cases}0 & \text { if }-d-n-1<0 \\
K \cdot \frac{1}{t_{0} \ldots t_{n}} & \text { if }-d-n-1=0\end{cases} \\
& \cong H^{0}\left(X, \mathcal{O}_{X}(-d-n-1)\right)
\end{aligned}
$$

Part 3: This follows immediately from the fact that $H^{p}\left(X, \mathcal{O}_{X}(d)\right)=\check{H}^{p}\left(X, \mathcal{O}_{X}(d)\right)$. But $C^{p}\left(X, \mathcal{O}_{X}(d)\right)=0$ for all $p>n$.
Part 4: We may assume that $n \geq 2$ or there is nothing to prove. Let Y be the closed subscheme defined by $\left\langle t_{n}\right\rangle$ and $g: Y \rightarrow \mathbb{P}_{K}^{n}$ the corresponding closed immersion. Then $Y \cong \mathbb{P}_{K}^{n-1}=\operatorname{Proj} K\left[t_{0}, \ldots, t_{n-1}\right]$ and we have an exact sequence

$$
0 \longrightarrow \widetilde{\left\langle t_{n}\right\rangle} \longrightarrow \mathcal{O}_{X} \longrightarrow g_{*} \mathcal{O}_{Y} \longrightarrow 0
$$

Now, we have an isomorphism

$$
\begin{aligned}
S(-1) & \rightarrow\left\langle t_{n}\right\rangle \\
s & \mapsto t_{n} s
\end{aligned}
$$

so that $\widetilde{\left\langle t_{n}\right\rangle}=\mathcal{O}_{X}(-1)$. Hence the exact sequence takes the form

$$
0 \longrightarrow \mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X} \longrightarrow g_{*} \mathcal{O}_{Y} \longrightarrow 0
$$

Tensoring with $\mathcal{O}_{X}(d)$ yields

$$
0 \longrightarrow \mathcal{O}_{X}(d-1) \longrightarrow \mathcal{O}_{X}(d) \longrightarrow g_{*} \mathcal{O}_{Y}(d) \longrightarrow 0
$$

Taking cohomology yields a long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow H^{0}\left(X, g_{*} \mathcal{O}_{Y}(d)\right) \\
&\left.\longleftrightarrow H^{1}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow g_{*} \mathcal{O}_{Y}(d)\right) \ldots \\
& \hdashline H^{n-1}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow H^{n-1}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow H^{n-1}\left(X, g_{*} \mathcal{O}_{Y}(d)\right) \\
& H^{n}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow H^{n}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow H^{n}\left(X, g_{*} \mathcal{O}_{Y}(d)\right)
\end{aligned}
$$

Now, it is easy to see that $H^{p}\left(X, g_{*} \mathcal{O}_{Y}(d)\right)=H^{p}\left(Y, \mathcal{O}_{Y}(d)\right)$ for all $p \geq 0$ since pushing forward a sheaf is an exact functor. Moreover, $H^{n}\left(Y, \mathcal{O}_{Y}(d)\right)=0$ by Part 3 so the long exact sequence becomes

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow^{f_{1}} \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(d)\right)-f_{2} \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(d)\right) \longrightarrow \\
& \longleftrightarrow H^{1}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow^{\alpha} \longrightarrow H^{1}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow H^{1}\left(Y, \mathcal{O}_{Y}(d)\right) \ldots, \\
& \begin{aligned}
& H^{n-1}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow H^{n-1}\left(\underset{\beta}{ }, \mathcal{O}_{X}(d)\right) \longrightarrow H^{n-1}\left(Y, \mathcal{O}_{Y}(d)\right) \\
& H^{n}\left(X, \mathcal{O}_{X}(d-1)\right) \longrightarrow \gamma \longrightarrow H^{n}\left(X, \mathcal{O}_{X}(d)\right) \longrightarrow 0
\end{aligned}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{dim}_{K}(\operatorname{im} \gamma)=\operatorname{dim}_{K} H^{n}\left(X, \mathcal{O}_{X}(d)\right)=\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(-n-1-d)\right)=\binom{-2-d}{n-1} \\
& \operatorname{dim}_{K} H^{n}\left(X, \mathcal{O}_{X}(d-1)=\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(-n-d)=\binom{-d-1}{n-1}\right.\right.
\end{aligned}
$$

By the Rank-Nullity Theorem, we then have that

$$
\operatorname{dim}_{K}(\operatorname{im} \beta)=\operatorname{dim}_{K}(\operatorname{ker} \gamma)=\binom{-d-1}{n-1}-\binom{-2-d}{n-1}=\binom{-2-d}{n-2}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{dim}_{K} H^{n-1}\left(Y, \mathcal{O}_{Y}(d)\right) & =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(-(n-1)-d-1)\right)=\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(-n-d)\right) \\
& =\binom{-n-d+(n-1)-1}{(n-1)-1}=\binom{-d-2}{n-2}
\end{aligned}
$$

so we must have that $\operatorname{dim}_{K}(\operatorname{ker} \beta)=0$ whence β is injective. Similarly,

$$
\begin{aligned}
\operatorname{dim}_{K}(\operatorname{ker} \alpha)=\operatorname{dim}_{K}(\operatorname{im} \delta) & =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)-\operatorname{dim}_{K}(\operatorname{ker} \delta) \\
& =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)-\operatorname{dim}_{K}\left(\operatorname{im} f_{2}\right) \\
& =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)-\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d)\right)+\operatorname{dim}_{K}\left(\operatorname{ker} f_{2}\right) \\
& =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)-\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d)\right)+\operatorname{dim}_{K}\left(\operatorname{im} f_{1}\right) \\
& =\operatorname{dim}_{K} H^{0}\left(Y, \mathcal{O}_{Y}(d)\right)-\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d)\right)+\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d-1)\right) \\
& =\binom{n-2+d}{n-2}-\binom{n-1+d}{n-1}+\binom{n+d-1}{n} \\
& =0
\end{aligned}
$$

so that α is injective and δ is the zero map. Now, by induction n, we see that $H^{p}\left(Y, \mathcal{O}_{Y}(d)\right)=$ 0 for all $0<p<n-1$ whence the maps $H^{p}\left(X, \mathcal{O}_{X}(d-1)\right) \xrightarrow{\theta_{p}} H^{p}\left(X, \mathcal{O}_{X}(d)\right)$ are isomorphisms for $0<p<n$.

Now, using Čech cohomology, the maps β_{p} are induced by the maps

$$
S(d-1)_{\left(t_{i_{0}} \ldots i_{i_{p}}\right)}=\mathcal{O}_{X}(d-1)\left(U_{i_{0}, \ldots, i_{p}}\right) \rightarrow \mathcal{O}_{X}(d)\left(U_{i_{0}, \ldots, i_{p}}\right)=S(d)_{\left(t_{i_{0}} \ldots t_{i_{p}}\right)}
$$

which is just multiplication by t_{n}. Hence θ_{p} is just multiplication by t_{n}. Now let $\mathcal{F}=$ $\bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{X}(d)$. Then

$$
\begin{array}{r}
\mathcal{F}\left(U_{i_{0}, \ldots, i_{p}}\right)=\bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{X}(d)\left(U_{i_{0}, \ldots, i_{p}}\right) \cong \bigoplus_{d \in \mathbb{Z}} S(d)_{t_{i_{0}} \ldots i_{i_{p}}} \cong S_{t_{i_{0}} \ldots i_{i_{p}}} \\
\sum_{d \in \mathbb{Z}} \lambda_{d} \leftrightarrow\left(\lambda_{d}\right)
\end{array}
$$

The Čech complex is then

$$
0 \longrightarrow C^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \ldots
$$

which is nothing but

$$
0 \longrightarrow \prod S_{t_{i_{0}}} \longrightarrow \prod S_{t_{i_{0} t_{i_{1}}}} \longrightarrow \ldots
$$

Localising this complex at t_{n} gives

$$
0 \longrightarrow \prod S_{t_{0} t_{n}} \longrightarrow \prod S_{t_{i_{0} t_{1} t_{n}}} \longrightarrow \ldots
$$

But this is the Cech complex of $\left.\mathcal{F}\right|_{U_{n}}$ with respect to the cover $\mathcal{U}^{\prime}=\left\{U_{i} \cap U_{n}\right\}_{i \in I}$. But U_{n} is affine and so $\left.\mathcal{F}\right|_{U_{n}}$ is quasi-coherent and so

$$
\check{H}^{p}\left(\mathcal{U}^{\prime},\left.\mathcal{F}\right|_{U_{n}}\right)=H^{p}\left(U_{n},\left.\mathcal{F}\right|_{U_{n}}\right)=0
$$

for all $p>0$. Hence $\left.H^{p}(X, \mathcal{F})\right|_{t_{n}}=0$ for all $0<p<n$. But this means that for all $w \in H^{p}(X, \mathcal{F})$, there exists r such that $t_{n}^{r} w=0$ which implies that for all $u \in H^{p}\left(X, \mathcal{O}_{X}(d)\right)$, there exists s such that $t_{n}^{s} u=0$. Now, β_{p} was shown to be multiplication by t_{n} and we have shown that multiplication by t_{n} eventually kills every element of $H^{p}\left(X, \mathcal{O}_{X}(d-1)\right)$. Hence, in order for β_{p} to be an isomorphism, we must have that $H^{p}\left(X, \mathcal{O}_{X}(d)\right)=0$ for all $0<p<n$.

Proposition 5.0.2. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and \mathcal{F} a quasi-coherent sheaf on X. Then there exists $l, m \in \mathbb{Z}$ and a surjective homomorphism

$$
\varphi: \bigoplus_{i=1}^{l} \mathcal{O}_{X} \rightarrow \mathcal{F}(m)
$$

Proof. Proof omitted.
Theorem 5.0.3. Let K be a field and X a closed subscheme of \mathbb{P}_{K}^{n} and $f: X \rightarrow \mathbb{P}_{K}^{n}$ the corresponding closed immersion. If \mathcal{F} is a quasi-coherent sheaf on X then

$$
H^{p}(X, \mathcal{F}(d))=0
$$

for all $p>0$ and for sufficiently $d \in \mathbb{Z}$.
Proof. By definition, we have

$$
f_{*}(\mathcal{F}(d)) \cong\left(f_{*} \mathcal{F}\right)(d)=\left(f_{*} \mathcal{F}\right) \otimes_{\mathcal{O}_{K}^{n}} \mathcal{O}_{\mathbb{P}_{K}^{n}}(d)
$$

Moreover,

$$
H^{p}(X, \mathcal{F}(d)) \cong H^{p}\left(\mathbb{P}_{K}^{n},\left(f_{*} \mathcal{F}\right)(d)\right)
$$

so we can replace X with \mathbb{P}_{K}^{n} and \mathcal{F} with $f_{*} \mathcal{F}$ and so we can assume that $X=\mathbb{P}_{K}^{n}$. Now choose, $l, m \in \mathbb{Z}$ so that we have a surjective homomorphism

$$
\varphi: \bigoplus_{i=1}^{l} \mathcal{O}_{X} \rightarrow \mathcal{F}(m)
$$

Let \mathcal{G} be the kernel of this morphism so that we have an exact sequence

Tensoring with $\mathcal{O}_{X}(d-m)$ yields

$$
0 \longrightarrow \mathcal{G}(d-m) \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_{X}(d-m) \longrightarrow \mathcal{F}(d) \longrightarrow 0
$$

Taking cohomology groups yields a long exact sequence

$$
\begin{aligned}
\cdots & \longrightarrow H^{p}(X, \mathcal{G}(d-m)) \longrightarrow H^{p}\left(X, \bigoplus_{i=1}^{l} \mathcal{O}_{X}(d-m)\right) \longrightarrow H^{n}(X, \mathcal{F}(d)) \longrightarrow \\
& \longleftrightarrow H^{p+1}(X, \mathcal{G}(d-m)) \longrightarrow
\end{aligned}
$$

By Theorem 5.0.1. $H^{p}\left(\bigoplus_{i=1}^{l} \mathcal{O}_{X}(d-m)\right)=0$ for all $p>0$ and large enough $d \in \mathbb{Z}$. By reverse induction, $H^{p+1}(X, \mathcal{G}(d-m))=0$ for all $p+1>n$ since, using Čech cohomology, there are not enough open sets to intersect for $p+1>n$. This then forces $H^{n}(X, \mathcal{F}(d))=0$ for large enough d and so by induction on p we have $H^{p}(X, \mathcal{F}(d))=0$ for all $p>0$ and large enough d.

Theorem 5.0.4. Let K be a field and X a closed subscheme of \mathbb{P}_{K}^{n} and $f: X \rightarrow \mathbb{P}_{K}^{n}$ the corresponding closed immersion. If \mathcal{F} is a quasi-coherent sheaf on X then $H^{p}(X, \mathcal{F})$ is a finite-dimensional K-vector space for all p.

Proof. As before, we can assume that $X=\mathbb{P}_{K}^{n}$. Let $m, l \in \mathbb{Z}$ be such that we have an exact sequence

$$
0 \longrightarrow \mathcal{G} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_{X} \longrightarrow \mathcal{F}(m) \longrightarrow 0
$$

Tensoring with $\mathcal{O}_{X}(-m)$ yields

$$
0 \longrightarrow \mathcal{G}(-m) \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_{X}(-m) \longrightarrow \mathcal{F}(d) \longrightarrow 0
$$

Taking cohomology groups yields a long exact sequence

$$
\begin{aligned}
\cdots & \longrightarrow H^{p}(X, \mathcal{G}(d-m)) \longrightarrow H^{p}\left(X, \bigoplus_{i=1}^{l} \mathcal{O}_{X}(-m)\right) \longrightarrow H^{n}(X, \mathcal{F}(d)) \\
& \longleftrightarrow H^{p+1}(X, \mathcal{G}(-m)) \longrightarrow
\end{aligned}
$$

By revere induction on p, we see that for all $p+1>n$ we have $H^{p}(X, \mathcal{G}(-m))=0$. By Theorem 5.0.1, we know that

$$
\operatorname{dim}_{K} H^{p}\left(X, \bigoplus_{i=1}^{l} \mathcal{O}_{X}(-m)\right)<\infty
$$

for all p. This implies that $\operatorname{dim}_{K} H^{n}(X, \mathcal{F})<\infty$. By induction on p, we then have that $\operatorname{dim}_{K} H^{p}(X, \mathcal{F})<\infty$.

5.1 Euler Characteristic and Hilbert Polynomials

Definition 5.1.1. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \rightarrow \mathbb{P}_{K}^{n}$. Let \mathcal{F} be a coherent sheaf over X. We define the Euler characteristic of \mathcal{F} to be

$$
\chi(X, \mathcal{F})=\sum_{p}(-1)^{p} \operatorname{dim}_{K} H^{p}(X, \mathcal{F})
$$

Lemma 5.1.2. Let K be a field and X a scheme projective over K. Suppose that we have an exact sequence of coherent sheaves over X

$$
0 \longrightarrow \mathcal{F}_{1} \longrightarrow \mathcal{F}_{2} \longrightarrow \ldots \longrightarrow \mathcal{F}_{r} \longrightarrow 0
$$

Then

$$
\sum_{i=0}^{r}(-1)^{i} \chi\left(X, \mathcal{F}_{i}\right)=0
$$

Proof. If $r \leq 2$ then the Lemma is trivial. Now suppose that $r=3$. Then we have a long exact sequence of cohomology groups

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X, \mathcal{F}_{1}\right) \longrightarrow H^{0}\left(X, \mathcal{F}_{2}\right) \longrightarrow H^{0}\left(X, \mathcal{F}_{3}\right) \\
& \longleftrightarrow H^{1}\left(X, \mathcal{F}_{1}\right) \longrightarrow H^{1}\left(X, \mathcal{F}_{3}\right) \ldots \\
&\left.\cdots H^{n}\right) \longrightarrow H^{n-1}\left(X, \mathcal{F}_{1}\right) \longrightarrow H^{n-1}\left(X, \mathcal{F}_{2}\right) \longrightarrow H^{n-1}\left(X, \mathcal{F}_{3}\right) \longrightarrow \\
& \longleftrightarrow H^{n}\left(X, \mathcal{F}_{1}\right) \longrightarrow H^{n}\left(X, \mathcal{F}_{3}\right) \longrightarrow 0
\end{aligned}
$$

By the Rank-Nullity Theorem, it follows that

$$
\operatorname{dim}_{K} H^{0}\left(X, \mathcal{F}_{1}\right)-\operatorname{dim}_{K} H^{0}\left(X, \mathcal{F}_{2}\right)+\cdots=0
$$

Now suppose that $r>3$. Let \mathcal{G} be the image of $\mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$. Then we have exact sequences

$$
0 \longrightarrow \mathcal{F}_{1} \longrightarrow \mathcal{F}_{2} \longrightarrow \mathcal{G} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{F}_{3} \longrightarrow \mathcal{F}_{4} \longrightarrow \ldots
$$

Then by induction we have $\chi\left(X, \mathcal{F}_{1}\right)-\chi\left(X, \mathcal{F}_{2}\right)+\chi(X, \mathcal{G})=0$ and $\chi(X, \mathcal{G})-\chi\left(X, \mathcal{F}_{3}\right)+\cdots=$ 0 . Subtracting these two equations gives us the Lemma.

Definition 5.1.3. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \rightarrow \mathbb{P}_{K}^{n}$. Let \mathcal{F} be a coherent sheaf over X. We define the Hilbert polynomial of \mathcal{F} to be the function

$$
\begin{aligned}
\phi_{\mathcal{F}}: \mathbb{Z} & \rightarrow \mathbb{Z} \\
d & \mapsto \chi(X, \mathcal{F}(d))
\end{aligned}
$$

Theorem 5.1.4. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \rightarrow \mathbb{P}_{K}^{n}$. Let \mathcal{F} be a coherent sheaf over X. Then $\phi_{\mathcal{F}} \in \mathbb{Q}[d]$.

Proof. Proof omitted (see handwritten notes).
Example 5.1.5. Let K be a field and $X=\mathbb{P}_{K}^{n}$. We shall calculate $\phi_{\mathcal{O}_{X}}$. We have that $\phi_{\mathcal{O}_{X}}(d)=\chi\left(X, \mathcal{O}_{X}(d)\right)=\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d)\right)-\operatorname{dim}_{K} H^{1}\left(X, \mathcal{O}_{X}(d)\right)+\cdots=\operatorname{dim}_{K} H^{0}\left(X, \mathcal{O}_{X}(d)\right)$ for large enough d. So we have

$$
\phi_{\mathcal{O}_{X}}(d)=\binom{n+d}{d}
$$

for all d.
Example 5.1.6. Let X be a closed subscheme of \mathbb{P}_{K}^{n} where K is a field, defined by $\langle h\rangle$ where h is homogeneous of degree r. We have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}_{K}^{n}}(-r) \longrightarrow \mathcal{O}_{\mathbb{P}_{K}^{n}} \longrightarrow f_{*} \mathcal{O}_{X} \longrightarrow 0
$$

so we have

$$
\phi_{\mathcal{O}_{X}}(d)=\phi_{f_{*} \mathcal{O}_{X}}(d)=\phi_{\mathcal{O}_{\mathbb{P}_{K}^{n}}}(d)-\phi_{\mathcal{O}_{\mathbb{P}_{K}^{n}}}(d-r)=\binom{d+n}{d}-\binom{d-r+n}{d-r}
$$

[^0]: ${ }^{1}$ while slightly overloading notation for the restriction maps

[^1]: ${ }^{2}$ Injective resolutions are unique up to homotopy and cohomology objects are homotopy-invariant.

