Algebraic Geometry Part III Michaelmas 2016-2017

Alexandre Daoud

May 27, 2017

Contents

1	Basic Definitions		
	1.1	Sheaves and Stalks	1
	1.2	Results from Commutative Algebra	8
	1.3	Spectrum of a Ring	11
	1.4		14
2	Schemes 16		
	2.1	Definitions	16
	2.2	Schemes Associated to Graded Rings	19
	2.3	Fibred Products	22
	2.4	\mathcal{O}_X -modules	24
	2.5	Quasi-coherent sheaves	26
	2.6	Sheaves Associated to Graded Modules	30
3	Div	isors and Differentials 3	84
	3.1	Invertible Sheaves and Cartier Divisors	34
	3.2	Differential Forms	38
4	Coh	nomology 4	10
	4.1	Results from Category Theory	40
	4.2	Cohomology of Sheaves	43
	4.3	Flasque Sheaves	46
	4.4	Cohomology of Affine Schemes	48
	4.5	Čech Cohomology	50
	4.6	Cohomology of Schemes	53
5	Cohomology of Projective Schemes		
	5.1	Euler Characteristic and Hilbert Polynomials	61

1 Basic Definitions

1.1 Sheaves and Stalks

Definition 1.1.1. Let X be a topological space, Op(X) the poset of open sets of X considered as a category and C a category. We define a **presheaf** of C-objects on X, denoted \mathcal{F} ,

to be a contravariant functor $\mathcal{F} : \mathbf{Op}(X) \to \mathcal{C}$. Given an open set $U \subseteq X$, we refer to the elements of $\mathcal{F}(U)$ as the **sections** of U. Moreover, given an inclusion of open sets $V \subseteq U$ we say that $\mathcal{F}(U \subseteq V) = F(V) \to F(U)$ is the **restriction** of U to V where $s \in \mathcal{F}(U)$ is mapped to $s|_V \in \mathcal{F}(V)$.

Finally, we define a **sheaf** on X to be a presheaf \mathcal{F} such that if

$$U = \bigcup_i U_i$$

for some open sets $U_i \subseteq X$ and if $s_i \in \mathcal{F}(U_i)$ with $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i, j then there exists a unique $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all i.

Example 1.1.2. Let X be a topological space. Then the functor $\mathcal{F} : \mathbf{Op}(X) \to \mathbf{AbGrp}$ given by

$$\mathcal{F}(U) = \{ \text{ continuous functions } U \to \mathbb{R} \}$$

is a sheaf.

Example 1.1.3. From now on, C will either be **AbGrp**, **Ring** or **Mod**_{**R**} for some commutative ring R. Moreover, *sheaf* shall be synonymous with *sheaf of* C*-objects*.

Definition 1.1.4. Let (I, \leq) be a directed poset. Suppose for each $i \in I$ we have an abelian group A_i and for each pair $i \leq j$ we have a map $\varphi_{ij} : A_i \to A_j$ with $\varphi_{ii} = \mathrm{id}_{A_i}$ such that whenever $i \leq j \leq k$, we have $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$. Then we say that (A_i, φ_{ij}) is a **directed system** of abelian groups.

Moreover, consider pairs (A_i, a_i) with $a_i \in A_i$. Define an equivalence relation on these pairs where $(A_i, a_i) \sim (A_j, a_j)$ if and only if there exists a $k \ge i, j$ such that $\varphi_{ik}(a_i) = \varphi_{jk}(a_j)$. Denoting the equivalence class of (A_i, a_i) under \sim as $[A_i, a_i]$, we may define a group operation on the set of all such equivalence classes as follows:

$$[A_i, a_i] + [A_j, a_j] = [A_k, \varphi_{ik}(a_i) + \varphi_{jk}(a_j)]$$

for any $k \ge i, j$. We call this group the **direct limit** of the direct system (A_i, φ_{ij}) and we denote it by $\varinjlim_{i \in I} A_i$.

Definition 1.1.5. Let X be a topological space, \mathcal{F} a presheaf of abelian groups on X and $x \in X$. Consider the directed poset (I, \subseteq) consisting of open sets containing x, ordered by inclusion. Then $\mathcal{F}(U_i)$, together with the restriction homomorphisms, define a direct system. We define the **stalk** of \mathcal{F} at x by

$$\mathcal{F}_x = \lim_{\overrightarrow{U_i \in I}} \mathcal{F}(U_i)$$

Definition 1.1.6. Let X be a topological space and \mathcal{F}, \mathcal{G} presheaves of abelian group on X. We define a **morphism** of presheaves to be a natural transformation $\varphi : F \to G$. In other words, φ is given by a collection of group homomorphisms $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ such that if $V \subseteq U$ then the diagram

$$\begin{array}{cccc}
\mathcal{F}(U) & \stackrel{\varphi_U}{\longrightarrow} & \mathcal{G}(U) \\
& \downarrow_{|_V} & & \downarrow_{|_V} \\
\mathcal{F}(V) & \stackrel{\varphi_V}{\longrightarrow} & \mathcal{G}(V)
\end{array}$$

is commutative. Moreover, we say that φ is an **isomorphism** of presheaves if it has an inverse. We denote by $\mathbf{Sh}(X)$ the category of all sheaves on X together with their morphisms.

Remark. Given a morphism of presheaves $\varphi : \mathcal{F} \to \mathcal{G}$ and a point $x \in X$ there is a natural homomorphism of stalks

$$\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$$
$$(U, s) \mapsto (U, \varphi_U(s))$$

Theorem 1.1.7. Let X be a topological space and \mathcal{F} a presheaf of abelian groups on X. Then there exists a sheaf \mathcal{F}^+ and a morphism $\alpha : \mathcal{F} \to \mathcal{F}^+$ such that, given any sheaf \mathcal{G} and morphism of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$, φ factors through \mathcal{F}^+ uniquely:

for some morphism of sheaves $\mathcal{F}^+ \to \mathcal{G}$. We shall refer to \mathcal{F}^+ as the **sheaf associated** to \mathcal{F} or the **sheafification** of \mathcal{F} .

Proof. Fix an open set $U \subseteq X$ and let $\{U_i\}_{i \in I}$ be an open cover for some indexing set I. We claim that

$$\mathcal{F}^+(U) = \left\{ s: U \to \bigcup_{x \in U} \mathcal{F}_x \mid \exists x \in W \subseteq U \text{ open, } t \in \mathcal{F}(W) \text{ s.t } s(y) = [W, t] \forall y \in W \right\}$$

defines the desired sheaf along with the natural restriction morphisms. This clearly defines a presheaf so it thus suffices to show that \mathcal{F}^+ satisfies the sheaf axiom. Let $s_i \in \mathcal{F}^+(U_i)$ be sections such that for all $i, j \in I$ we have $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$. Define a function

$$s: U \to \bigcup_{x \in U} \mathcal{F}_x$$
$$y \mapsto s_i(y)$$

for some *i* such that $y \in U_i$. Then *s* is well-defined since the sections s_i all agree on overlaps. Now, given any $x \in U$, we clearly have $s(x) \in \mathcal{F}_x$ since $s(x) = s_i(x)$ for any $i \in I$ such that $U_i \ni x$. Furthermore, for each s_i , there exists an open neighbourhood $x \in W_i \subseteq U$ and a section $t \in \mathcal{F}(W)$ such that for all $y \in W_i$ we have $s_i(y) = [W, t]$. Clearly, we can take any of these W_i and the same will apply for *s* whence $s \in \mathcal{F}^+(U)$. Lastly, we must show that such an *s* is unique. To this end, suppose there exists a $t \in \mathcal{F}^+(U)$ such that their restrictions $s_i, t_i \in \mathcal{F}^+(U_i)$ agree. Then for all $x \in U$, there exists a $U_i \ni x$ such that $s_i(x) = t_i(x)$ and so s(x) = t(x). Since this holds for all $x \in U$, we must have that s = t. We have thus shown that \mathcal{F}^+ is indeed a sheaf.

Now, given $s \in \mathcal{F}(U)$, define $\alpha : \mathcal{F} \to \mathcal{F}^+$ by setting $\alpha_U(s)$ to be the function mapping $x \in U$ to [U, s]. This is easily seen to be a morphism of presheaves as it is compatible with the natural restriction morphisms.

To see that φ factors uniquely through \mathcal{F}^+ , we must construct a unique morphism of sheaves $\psi : \mathcal{F}^+ \to \mathcal{G}$. To this end, fix $s \in \mathcal{F}^+(U)$ and for each U_i in the open cover, choose $s_i \in \mathcal{F}(U_i)$ such that $\alpha_{U_i}(s_i) = s|_{U_i}$. Now set $t_i = \varphi(s_i)$. Since φ is a morphism of presheaves, it follows that $t_i|_{U_i \cap U_j} = t_j|_{U_i \cap U_j}$. Since \mathcal{G} is a sheaf, there exists a unique $t \in \mathcal{G}(U)$ such that $t|_{U_i} = t_i$. We must therefore have that $\psi_U(s) = t$ and we are done. \Box **Remark.** Let X be a topological space and \mathcal{F} a presheaf. For all $x \in X$, we have a homorphism of groups

$$\alpha_x: \mathcal{F}_x \to \mathcal{F}_x^+$$

This is infact an isomorphism since the sections of \mathcal{F}^+ are locally just sections of \mathcal{F} .

Example 1.1.8. Let $X = \{a, b\}$ be a topological space where the open sets are $\emptyset, X, U = \{a\}$ and $V = \{b\}$. Define a presheaf of abelian groups on X by setting

$$\mathcal{F}(\emptyset) = 0, \quad \mathcal{F}(X) = \mathbb{Z}, \quad \mathcal{F}(U) = 0, \quad \mathcal{F}(V) = 0$$

with the natural restriction homomorphisms. We first calculate the stalks of \mathcal{F} . Recall that the stalk at a is given by

$$\mathcal{F}_a = \frac{\{ (A, s) \mid A \ni a, s \in \mathcal{F}(A) \}}{\sim}$$

where \sim is the equivalence relation given by $(U, s) \sim (V, t)$ if and only if there exists an open $a \in W \subseteq U \cap V$ such that $s|_W = t|_W$. We have that

$$\{(A,s) \mid A \ni a, s \in \mathcal{F}(A)\} = \{(U,0), \dots, (X,-1), (X,0), (X,1), \dots\}$$

Clearly the elements of this set are all equivalent so we have $\mathcal{F}_a = 0$. Similarly, we find that $\mathcal{F}_b = 0$. It then follows that all sections of \mathcal{F}^+ are necessarily 0.

Example 1.1.9. Let $X = \{a, b\}$ be a topological space where the open sets are $\emptyset, X, U = \{a\}$ and $V = \{b\}$. Define a presheaf of abelian groups on X by setting

$$\mathcal{F}(\emptyset) = 0, \quad \mathcal{F}(X) = 0, \quad \mathcal{F}(U) = \mathbb{Z}, \quad \mathcal{F}(V) = \mathbb{Z}$$

We again calculate the stalks of this presheaf. The set to consider in the direct limit for \mathcal{F}_a is

$$\{ (A,s) \mid A \in a, s \in \mathcal{F}(A) \} = \{ (X,0), \dots, (U,-1), (U,0), (U,1), \dots \}$$

Clearly the only equivalent elements are (X, 0) and (U, 0) so $\mathcal{F}_a = \mathbb{Z}$. Similarly, we have $\mathcal{F}_b = \mathbb{Z}$. By the definition of the sheafification, we then have that $\mathcal{F}^+(U) = \mathcal{F}^+(V) = \mathbb{Z}$ and $\mathcal{F}^+(X) = \mathbb{Z} \oplus \mathbb{Z}$.

Definition 1.1.10. Let X be a topological space and $\varphi : F \to G$ a morphism of presheaves. We define the **presheaf kernel** of φ , denoted ker φ^{pre} by

$$(\ker \varphi^{\operatorname{pre}})(U) = \ker (\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U))$$

Similarly, we define the **presheaf image** of φ , denoted im φ^{pre} by

$$(\operatorname{im} \varphi^{\operatorname{pre}})^+(U) = \operatorname{im}(\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U))$$

Furthermore, if \mathcal{F} and \mathcal{G} are also sheaves then we also have the **sheaf kernel**, denoted ker φ , defined in the same way and the **sheaf image**, defined by im $\varphi = (\operatorname{im} \varphi^{\operatorname{pre}})^+$.

Finally, we say that φ is injective if ker $\varphi = 0$ and surjective if im $\varphi = G$.

Proposition 1.1.11. Let X be a topological space and $\varphi : \mathcal{F} \to \mathcal{G}$ a morphism of presheaves. Then ker φ^{pre} and im φ^{pre} are presheaves of abelian groups. If, in addition, \mathcal{F} and \mathcal{G} are sheaves then ker φ is also a sheaf. *Proof.* Since the kernel of any homomorphisms of abelian groups is again an abelian group, ker φ^{pre} indeed assigns an abelian group to each open set $U \subseteq X$. Furthermore, since the mapping between the empty sets is vacuously 0, we have that $(\ker \varphi^{\text{pre}})(\emptyset) = 0$. Finally, the restriction homomorphisms are made evident in the following diagram¹:

A similar argument also shows that im φ^{pre} is a presheaf. To show that $\ker \varphi$ is a sheaf, assume that we are given an open set $U \subseteq X$ and an open cover $U = \bigcup_{i \in I} U_i$ for some indexing set I. Suppose that $s_i \in (\ker \varphi)(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i, j. We need to show that there exists a unique $s \in (\ker \varphi)(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$. Since $(\ker \varphi)(U) \subseteq \mathcal{F}(U)$ and \mathcal{F} is a sheaf, it follows that the sections local s_i glue together to give a global section $s \in \mathcal{F}(U)$. We claim that such an s is the desired global section. To this end, we have that $\varphi(s_i) = 0$ for all $i \in I$. Since \mathcal{G} is a sheaf, these local sections must glue together to give a global section $\varphi(s) = 0$. Hence $s \in (\ker \varphi)(U)$. The uniqueness of such an s follows immediately from the fact that \mathcal{F} is a sheaf. \Box

Example 1.1.12. Let $X = \{a, b\}$ be a topological space where the open sets are $\emptyset, X, U = \{a\}$ and $V = \{b\}$. Define a sheaf on X by setting

$$\mathcal{F}(\emptyset) = 0, \quad \mathcal{F}(X) = \mathbb{Z} \oplus \mathbb{Z}, \quad \mathcal{F}(U) = \mathbb{Z}, \quad \mathcal{F}(V) = \mathbb{Z}$$

Define the sheaf \mathcal{G} on X by setting

$$\mathcal{G}(\varnothing) = 0, \quad \mathcal{F}(X) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \quad \mathcal{F}(U) = \mathbb{Z}/2\mathbb{Z}, \quad \mathcal{F}(V) = \mathbb{Z}/2\mathbb{Z}$$

Furthermore, define a morphism of sheaves between $\varphi : \mathcal{F} \to \mathcal{G}$ by setting

$$\varphi_X : \mathcal{F}(X) \to \mathcal{G}(X)$$
$$(m, n) \mapsto (\overline{m}, \overline{n})$$
$$\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$$
$$m \mapsto \overline{m}$$
$$\varphi_V : \mathcal{F}(V) \to \mathcal{G}(V)$$

$$n \mapsto \overline{n}$$

Then $(\ker \varphi)(X) = 2\mathbb{Z} \times 2\mathbb{Z}$ and $(\ker \varphi)(U) = 2\mathbb{Z} = (\ker \varphi)U$ and $\operatorname{im} \varphi = \mathcal{G}$.

Theorem 1.1.13. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of shaves on a topological space X. Then

- 1. φ is injective if and only if $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective for all $x \in X$.
- 2. φ is surjective if and only if $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is surjective for all $x \in X$.
- 3. φ is an isomorphism if and only if $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism for all $x \in X$.

¹while slightly overloading notation for the restriction maps

Proof. Part 1: First suppose that φ is injective, fix some $x \in X$ and choose an equivalence class $[U, s] \in \mathcal{F}_x$. Then $0 = \varphi_x([U, s]) = [U, \varphi_U(s)]$ implies that there exists an open $W \ni x$ with $W \subseteq U$ such that $\varphi_U(s)|_W = 0$. This in turn implies that $\varphi_W(s|_W) = 0$. Now φ is injective by hypothesis so $s|_W = 0$. Hence 0 = [W, s] = [U, s] as desired.

Now suppose that φ_x is injective for all $x \in X$. Given an open set $U \subseteq X$, assume that $\varphi_U(s) = 0$ with $s \in \mathcal{F}(U)$. We then have that

$$0 = [U, 0] = [U, \varphi_U(s)] = \varphi_x([U, s])$$

Since φ_x is injective, we thus have that [U, s] = 0. This implies that there exists some $W \ni x$ open with $W \subseteq U$ and $s|_W = 0$. Since this applies to all $x \in X$ and since \mathcal{F} is a sheaf, it follows that s = 0.

<u>Part 2:</u> Assume that φ is surjective, in other words, $(\operatorname{im} \varphi^{\operatorname{pre}})^+ = \mathcal{G}$. Then the homomorphism $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is just

$$\varphi_x: \mathcal{F}_x \to (\operatorname{im} \varphi^{\operatorname{pre}})_x^+ \cong \operatorname{im} \varphi_x^{\operatorname{pre}}$$

which is trivially surjective.

Now suppose that φ_x is surjective for all $x \in X$. We want to show that for all open neighbourhoods $U \subseteq X$, the group homomorphism

$$\varphi_U: \mathcal{F}(U) \to \mathcal{G}(U)$$

is surjective. To this end, fix an open $U \subseteq X$ and let $t \in \mathcal{G}(U)$. We need to show that there exists an $s \in \mathcal{F}(U)$ such that $\varphi_U(s) = t$. By hypothesis, given x, we have that for all $[W, b] \in \mathcal{G}_x$, there exists a $[V, a] \in \mathcal{F}_x$ such that

$$\varphi_x([V,a]) = [W,b]$$

In particular, there exists an $s \in \mathcal{F}(U)$ and an open neighbourhood $x \in V \subseteq U$ such that $\varphi_x([V,s]) = [U,t]$. But the left hand side of this equation is equal to $[V,\varphi_U(s_x)]$. By the definition of a stalk, this is equivalent to there existing an open neighbourhood $x \in W \subseteq V$ such that $\varphi_U(s)|_W = t$. In other words, sections of \mathcal{G} are just locally the images of sections of \mathcal{F} . Passing to the sheafification, we then have that im $\mathcal{F} = \mathcal{G}$ as desired.

<u>Part 3:</u> First suppose that φ is an isomorphism. Then it is injective and surjective and by Parts 1 and 2, φ_x is an isomorphism for each $x \in X$.

Conversely, suppose that each φ_x is an isomorphism for all $x \in X$. By Parts 1 and 2, φ is injective and surjective. Let $\mathcal{H} = \operatorname{im} \varphi^{\operatorname{pre}}$. Since φ is injective, $\mathcal{F}(U)$ is isomorphic to $\mathcal{H}(U)$ for all open sets $U \subseteq X$. In particular, \mathcal{H} is a sheaf isomorphic to \mathcal{F} . Since φ is surjective, $\mathcal{H}^+ = \mathcal{G}$. Since \mathcal{H} is a sheaf, $\mathcal{H} = \mathcal{G}$. Hence φ is an isomorphism.

Definition 1.1.14. Let X be a topological space. We define a **complex** of sheaves to be a sequence

$$\cdots \longrightarrow \mathcal{F}_{-1} \xrightarrow{\varphi_0} \mathcal{F}_0 \xrightarrow{\varphi_1} \mathcal{F}_1 \xrightarrow{\varphi_2} \mathcal{F}_2 \xrightarrow{\varphi_2} \cdots$$

such that im $\varphi_i \subseteq \ker \varphi_{i+1}$ for all *i*. We say that this complex is an **exact sequence** if we have im $\varphi_i = \ker \varphi_{i+1}$ for all *i*. Furthermore, an exact sequence of the form

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

is called a **short** exact sequence.

Example 1.1.15. Let X be a topological space and A an abelian group. Define a presheaf \mathcal{F} by setting $\mathcal{F}(U) = A$ for all non-empty open sets $U \subseteq X$. We call \mathcal{F}^+ the **constant sheaf** associated to A. Also define the sheaf \mathcal{G} by

 $\mathcal{G}(U) = \{ \text{ continuous functions } U \to A \}$

where A is equipped with the discrete topology. Define a morphism $\varphi : \mathcal{F} \to \mathcal{G}$ by sending $s \in \mathcal{F}(U)$ to the constant function

$$f_s: U \to A$$
$$u \mapsto s$$

Then φ induces an isomorphism of sheaves $\varphi : \mathcal{F}^+ \to \mathcal{G}$. This follows from showing the stalks of the two sheaves are isomorphic. Indeed, to show that $\varphi_x : \mathcal{F}_x^+ \to \mathcal{G}_x$ is an injective, suppose that $\varphi_x([U,s]) = 0$. By definition, we have that $[U, \varphi_U(s)] = 0$. This just means that, locally, $\varphi_U(s)$ is the zero function whence s = 0 and so [U, s] = 0.

For surjectivity, choose $[V, t] \in \mathcal{G}_x$. We need to exhibit a $[U, s] \in \mathcal{F}_x$ such that $\varphi_x([U, s]) = [V, t]$. By definition, t is a continuous function $t : V \to A$ so set s = t(x) and $U = t^{-1}(\{s\})$. We claim that [U, s] is the desired element of \mathcal{F}_x . We have that $\varphi_x([U, s]) = [U, \varphi_U(s)] = [U, \varphi_U(s)] = [U, f_s]$. Then $[U, f_s] \sim [V, t]$ if and only if there exists an open neighbourhood $x \in W$ such that $W \subseteq U \cap V$ and $f_s|_W = t|_W$. However, we may simply take W = U and we are done.

Definition 1.1.16. Let X and Y be a topological space and $f : X \to Y$ a continuous mapping. If \mathcal{F} is a presheaf on X, we define the **direct image** of \mathcal{F} with respect to f, denoted f_* , to be the assignment

$$(f_*\mathcal{F})(V) = \mathcal{F}(f^{-1}V)$$

giving rise to a presheaf on Y.

Proposition 1.1.17. Let X and Y be topological spaces, $f : X \to Y$ a continuous mapping and \mathcal{F} a sheaf on X. Then $(f_*\mathcal{F})$ is a sheaf on Y.

Proof. The direct image is clearly a presheaf on Y with the natural restriction morphisms. To show that it is a sheaf, let $V \subseteq Y$ be an open neighbourhood and $\{V_i\}_{i \in I}$ an open cover of V where I is some indexing set. Choose $t_i \in (f_*\mathcal{F})(V_i)$ such that $t_i|_{V_i \cap V_j} = t_j|_{V_i \cap V_j}$ for all i, j. Each t_i is in $\mathcal{F}(f^{-1}V_i)$ and satisfies $t_i|_{f^{-1}V_i \cap f^{-1}V_j} = t_j|_{f^{-1}V_i \cap f^{-1}V_j}$ for all i, j. Since \mathcal{F} is a sheaf, there exists a unique $t \in f^{-1}V$ such that $t|_{f^{-1}V_i} = t_i$ for all i. Hence there exists a $t \in (f_*\mathcal{F})(V)$ such that $t|_{V_i} = t_i$ for all i. Thus, the direct image is a sheaf. \Box

Example 1.1.18. Let X be a topological space, $x \in X$ and A an abelian group. Define a sheaf on X by setting

$$\mathcal{F}(U) = \begin{cases} A & \text{if } x \in U \\ 0 & \text{if } x \notin U \end{cases}$$

where $U \subseteq X$ is an open set. This is referred to as the **skyscraper** sheaf associated to A at x. Let $Z = \{x\}$ and define the inclusion map

$$i: Z \hookrightarrow X$$

Let \mathcal{G} be the constant sheaf on Z associated to A. Then $\mathcal{F} = i_* \mathcal{G}$.

1.2 Results from Commutative Algebra

Henceforth, all rings are assumed to be commutative.

Definition 1.2.1. Let *R* be a ring. We say that *R* is **local** if it has a unique maximal ideal.

Definition 1.2.2. Let R and S be local rings with maximal ideals \mathfrak{m}_R and \mathfrak{m}_S . A homomorphism of rings $\alpha : R \to S$ is said to be **local** if $\alpha(\mathfrak{m}_R) \subseteq \mathfrak{m}_S$.

Definition 1.2.3. Let R be a ring and $I \triangleleft R$ an ideal. We define the **radical** of I, denoted \sqrt{I} to be the set

$$\sqrt{I} = \{ r \in R \mid r^n \in I, n \in \mathbb{N} \}$$

Proposition 1.2.4. Let R be a ring and $I \triangleleft R$ an ideal. Then

$$\sqrt{I} = \bigcap_{\mathfrak{p} \supseteq I} \mathfrak{p}$$

where the intersection is taken over all prime ideals \mathfrak{p} contained in I.

Proof. Omitted.

Proposition 1.2.5. Let K be algebraically closed and $I \triangleleft K[t_1, \ldots, t_n]$ a maximal ideal. Then $I = (t_1 - a_1, \ldots, t_n - a_n)$ for some $a_i \in K$.

Proof. Omitted.

Definition 1.2.6. Let R be a ring and $S \subseteq R$ a subset. We say that S is **multiplicatively** closed if $1_R \in S$ and $s, t \in S$ implies that $st \in S$.

Definition 1.2.7. Let R be a ring and $S \subseteq R$ a multiplicatively closed subset. Consider the set

$$\left\{ \left. \frac{r}{s} \right| r \in R, s \in S \right\}$$

of formal fractions. Define an equivalence relation on this set with $a/s \sim b/s'$ if and only if there exists $s'' \in S$ such that s''(as' - bs) = 0. We define

$$S^{-1}A = \left\{ \left. \frac{r}{s} \right| r \in R, s \in S \right\} / \sim$$

to be the **ring of fractions** of R with respect to S with ring operations given by

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$$

Example 1.2.8. Let $R = \mathbb{Z}$ and $S = \mathbb{Z} \setminus \{0\}$. Then $S^{-1}R = \mathbb{Q}$.

Remark. There is a natural inclusion homomorphism

$$\alpha: R \hookrightarrow S^{-1}R$$
$$r \mapsto \frac{r}{1}$$

Proposition 1.2.9. Let R be a ring and $I \triangleleft R$ an ideal. Then

$$S^{-1}I = \left\{ \left. \frac{r}{s} \in S^{-1}R \right| r \in I \right\}$$

is an ideal of $S^{-1}R$. Moreover, any ideal of $S^{-1}R$ is of this form.

Proof. Fix an ideal of $I \triangleleft R$. We must show that $(S^{-1}I, +)$ is a subgroup of $(S^{-1}R, +)$ and that for all $S^{-1}I$ absorbs multiplication by elements of $S^{-1}R$.

 $S^{-1}I$ clearly contains the additive identity of $S^{-1}R$ since I contains the additive identity of R. Fix $a/b, c/d \in S^{-1}I$ where $a, c \in I$ and $b, d \in S$. Then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bd}{bd}$$

Now, S is multiplicatively closed so $bd \in S$. Furthermore, $ad + bc \in I$ so indeed $a/b + c/d \in S^{-1}I$. Clearly, all elements of $S^{-1}I$ have additive inverses so $(S^{-1}I, +)$ is indeed a subgroup of $(S^{-1}R, I)$. To prove that S^{-1} absorbs multiplication by elements of $S^{-1}R$, choose $a/b \in S^{-1}I$ and $c/d \in S^{-1}R$. Then

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

As before, $bd \in S$ and $ac \in I$ so the product of the two fractions is again in $S^{-1}I$ whence it is an ideal of $S^{-1}R$.

To show that any ideal of the ring of fractions is of this form, choose an ideal $J \triangleleft S^{-1}R$. Let I be the set consisting of all numerators of fractions in J. We claim that I is an ideal of R, it would then immediately follow that $J = S^{-1}I$.

I clearly contains the additive identity of R since J is an ideal of $S^{-1}R$. Furthermore, given $a, b \in I$, $a + b \in I$ since $a/1 + b/1 = (a + b)/1 \in J$. I also clearly contains additive inverses and so (I, +) is a subgroup of (R, +). Now let $i \in I$ and $r \in R$. Choose any fraction in J with i as its numerator, say $i/j \in J$. Then $i/j \cdot r/1 = ir/j \in J$ and so $ir \in I$ whence I is an ideal.

Proposition 1.2.10. Let R be a ring and $S \subseteq R$ a multiplicatively closed subset. Then there is a one-to-one inclusion preserving correspondence

$$\begin{cases} prime \ \mathfrak{p} \triangleleft R\\ \mathfrak{p} \cap S = \varnothing \end{cases} \longleftrightarrow \{ prime \ \mathfrak{p} \triangleleft S^{-1}R \}\\ \mathfrak{p} \longleftrightarrow S^{-1}\mathfrak{p} \end{cases}$$

Proof. We must check that the correspondence is well-defined and the two mappings are mutually inverse. To this end, fix a prime ideal $\mathfrak{p} \triangleleft R$ such that $\mathfrak{p} \cap S = \emptyset$ and let $a/b \cdot c/d \in S^{-1}\mathfrak{p}$. We need to show that either $a/b \in S^{-1}\mathfrak{p}$ or $c/d \in S^{-1}\mathfrak{p}$. Choose u, v such that ab/cd = u/v. Then there exists $z \in S$ such that z(abv - cdu) = 0. It then follows that $zabv \in \mathfrak{p}$. Since \mathfrak{p} is prime, one of z, a, b or v must be in \mathfrak{p} . But $\mathfrak{p} \cap S = \emptyset$ so it cannot be z or v. Hence either a or b is in \mathfrak{p} whence either a/b or $c/d \in S^{-1}\mathfrak{p}$.

Conversely, suppose that $\mathbf{q} \triangleleft S^{-1}R$ is prime. We need to show that the ideal \mathbf{p} consisting of all numerators in \mathbf{q} is prime. To this end, let $ab \in \mathbf{p}$. Choose a fraction in \mathbf{q} with ab as its numerator, say ab/cd. By definition this is equal to $a/b \cdot c/d \in \mathbf{q}$. But \mathbf{q} is prime so either $a/c \in \mathbf{q}$ or $b/d \in \mathbf{q}$ whence either a or b is in \mathbf{p} . Thus the maps are well defined and do map prime ideals to prime ideals.

We must now check that the maps are mutually inverse. Label the forward mapping φ and the backwards map ψ . First let $\mathfrak{p} \triangleleft R$ be prime. We want to show that $\psi(\varphi(\mathfrak{p})) = \mathfrak{p}$. \Box

Definition 1.2.11. Let R be a ring and $\mathfrak{p} \triangleleft R$ a prime ideal. Define a multiplicative subset $S = R \setminus \mathfrak{p}$. We call the ring of fractions $S^{-1}R$ the **localisation** of R at \mathfrak{p} and denote it $R_{\mathfrak{p}}$.

Proposition 1.2.12. Let R be a ring and $\mathfrak{p} \triangleleft R$ prime. Then $R_{\mathfrak{p}}$ is a local ring with unique maximal ideal given by $\mathfrak{p}_{\mathfrak{p}} := S^{-1}\mathfrak{p}$.

Proof. Let \mathfrak{m} be an ideal not contained in $\mathfrak{p}_{\mathfrak{p}}$. Choose a fraction $a/b \in \mathfrak{m}$. Then both a and b are contained in $R \setminus \mathfrak{p}$. By definition of the ring of fractions, this implies that the fraction b/a is an element of $R_{\mathfrak{p}}$. Hence $1_{R_{\mathfrak{p}}} = a/b \cdot b/a \in \mathfrak{m}$ whence $\mathfrak{m} = R_{\mathfrak{p}}$.

Remark. Let R be a ring and let $S = \{1, b, b^2, ...\}$ be a multiplicatively closed power set for some $b \in R$. We shall write $R_b = S^{-1}R$.

Moreover, note that all these definitions can be generalised to arbitrary modules over a commutative ring. More precisely, if R is a commutative ring, M an R-module and S^{-1} a multiplicative set in R then $S^{-1}M$ is an $S^{-1}R$ -module. Moreover, if $M \to N$ is an R-module homomorphism, we then have an induced homomorphism $S^{-1}M \to S^{-1}N$ of $S^{-1}R$ -modules. In fact, $S^{-1}(\cdot)$ is an exact functor $\mathbf{Mod}_{\mathbf{R}} \to \mathbf{Mod}_{\mathbf{S}^{-1}\mathbf{R}}$.

Definition 1.2.13. Let R be a ring and M, N R-modules. Let L denote the free R-module generated by elements of $M \times N$. Let E be the sub-R-module of L generated by elements of the form

- 1. (m+m',n) (m,n) (m',n')
- 2. (m, n + n') (m, n) (m, n')
- 3. (rm, n) r(m, n)
- 4. (m, rn) r(m, n)

where $m, m' \in M$, $n, n' \in N$ and $r \in R$. We define the **tensor product** of M and N over R to be

$$M \otimes_R N = L/E$$

and we write $m \otimes n$ for the equivalence class of (m, n).

Proposition 1.2.14. Let R be a ring and N, M and P R-modules. Then

- 1. If $M \times N \to P$ is an R-bilinear map then there exists a unique homomorphism of modules $M \otimes_R N \to P$.
- 2. $R \otimes_R M \cong M$.
- 3. $M \otimes_R N = N \otimes_R M$.
- 4. $(M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R P).$
- 5. $M \otimes_R (N \oplus P) \cong (M \otimes_R N) \oplus (M \otimes_R P).$
- 6. If $S \subseteq R$ is multiplicatively closed we have $S^{-1}M \cong S^{-1}R \otimes_R M$.
- 7. If $I \triangleleft R$ we have $R/I \otimes_R M \cong M/IM$.

Proof. Ommitted.

Remark. Let A, B, C and D be rings and $\alpha : A \to B, \beta : A \to C$. Then we have a commutative diagram

where φ sends b to $b \otimes 1$ and ψ sends c to $1 \otimes c$.

Proposition 1.2.15. Let A, B, C and D be rings and suppose we have a commutative diagram

Then there exists a unique homomorphism of A-modules $B \otimes_A C \to D$ extending the diagram to a commutative diagram

1.3 Spectrum of a Ring

Definition 1.3.1. Let *R* be a ring. We define the **spectrum** of *R*, denoted Spec *R*, to be the set of all prime ideals of *R*. Moreover, given any ideal $I \triangleleft R$, we define $V(I) = \{ \mathfrak{p} \in \text{Spec } R \mid I \subseteq \mathfrak{p} \}.$

Lemma 1.3.2. Let R be a ring. Then

- 1. For all $I, J \triangleleft R$ we have $V(IJ) = V(I \cap J) = V(I) \cup V(J)$.
- 2. For all families of ideals $I_{\alpha} \triangleleft R$ we have $V(\sum_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$.
- 3. For all $I, J \triangleleft R$ we have $V(I) \subseteq V(J)$ if and only if $\sqrt{I} \supseteq \sqrt{J}$.

Proof.

<u>Part 1:</u> We have that

 $\mathfrak{p} \in V(IJ) \iff IJ \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p} \text{ or } J \subseteq \mathfrak{p} \iff \mathfrak{p} \in V(I) \text{ or } \mathfrak{p} \in V(J)$

A similar argument applies to $V(I \cap J)$.

<u>Part 2:</u> We have that

$$\mathfrak{p} \in V\left(\sum_{\alpha} I_{\alpha}\right) \iff \sum_{I_{\alpha}} I_{\alpha} \subseteq \mathfrak{p} \iff I_{\alpha} \subseteq \mathfrak{p} \forall \alpha \iff \mathfrak{p} \in \bigcap_{\alpha} V(I_{\alpha})$$

<u>Part 3:</u> By Proposition 1.2.4, we have that $\sqrt{I} = \bigcap V(I)$ and $\sqrt{J} = \bigcap V(J)$. The statement then follows immediately.

Definition 1.3.3. Let R be a ring. We define the **Zariski** topology on $X = \operatorname{Spec} R$ by declaring the closed sets of X to be the V(I). Moreover, we define the **structure sheaf** of X, denoted by \mathcal{O}_X , to be the sheaf of rings

$$\mathcal{O}_X(U) = \left\{ s: U \to \bigcup_{\mathfrak{p} \in U} R_\mathfrak{p} \middle| \exists \mathfrak{p} \in W \subseteq U \text{ open s.t } \forall \mathfrak{q} \in W, s(\mathfrak{q}) = \frac{a}{b} \in R_\mathfrak{q} \right\}$$

Proposition 1.3.4. Let R be a ring and $X = \operatorname{Spec} R$. Then \mathcal{O}_X is indeed a sheaf.

Proof. \mathcal{O}_X is clearly a presheaf with the natural restriction homomorphisms. We just need to check the sheaf condition. To this end, let $U \subseteq X$ be an open set and $U = \bigcup_i U_i$ be an open cover of U. Suppose that $s_i \in \mathcal{O}_X(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i, j. Define a function

$$s: U \to \bigcup_{\mathfrak{p} \in U} R_{\mathfrak{p}}$$
$$\mathfrak{p} \mapsto s_i(\mathfrak{p})$$

where *i* is chosen whenever $\mathfrak{p} \in U_i$. Then this function is well-defined as the s_i agree on overlaps. We claim that *s* is the desired section in the sheaf condition. It's restriction to U_i is clearly just s_i so we must have that $s \in \mathcal{O}_X(U)$ and that such an *s* is unique. \Box

Proposition 1.3.5. Let R be a ring and $X = \operatorname{Spec} R$. Then

$$\{ D(b) = X \setminus V((b)) \mid b \in R \}$$

is a basis for the Zariski Topology on X.

Proof. It suffices to show that the D(b) are open in X and that any given any open set $U \subseteq X$ and a prime $x \in U$, there exists a $b \in R$ such that $x \in D(b) \subseteq U$.

Now, fix $b \in R$, it is immediate that D(r) is open as, by definition, $D(b) = X \setminus V((r))$ and $X \setminus D(b) = V((b))$ is closed.

Next, fix an open neighbourhood $U \subseteq X$ and a prime $\mathfrak{p} \in U$. By definition, $U = X \setminus V(I)$ for some ideal $I \subseteq R$. Moreover, \mathfrak{p} does not contain I. Choose any non-zero element $b \in I$. Then \mathfrak{p} does not contain (b) so that $\mathfrak{p} \notin V((b))$ whence $\mathfrak{p} \in X \setminus V((b)) = D(b)$. By construction, $D(b) \subseteq U$ thereby proving the proposition.

Theorem 1.3.6. Let R be a ring and $X = \operatorname{Spec} R$. Then

1. $(\mathcal{O}_X)_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ as local rings for all $\mathfrak{p} \in X$.

- 2. $\mathcal{O}_X(D(b)) \cong R_b$ for all $b \in R$.
- 3. $\mathcal{O}_X(X) \cong R$.

Proof.

<u>Part 1:</u> Define a ring homomorphism

$$f: (\mathcal{O}_X)_{\mathfrak{p}} \to R_{\mathfrak{p}}$$
$$[U, s] \mapsto s(\mathfrak{p})$$

We claim that f is the desired local isomorphism. We must first check that f is welldefined. Suppose that [U, s] = [V, t]. Then, by the definition of a stalk, there exists an open neighbourhood $\mathfrak{p} \in W \subseteq U \cap V$ such that $s|_W = t|_W$. It then follows that $s(\mathfrak{p}) = t(\mathfrak{p})$.

We now show that f is injective. Assume that $f([U, s]) = s(\mathfrak{p}) = 0$. By definition, s is given by some fraction a/b on some open neighbourhood $\mathfrak{p} \in W \subseteq U$. So $s(\mathfrak{p}) = 0$ implies that there exists some $c \notin \mathfrak{p}$ such that ca = 0. It then follows that we have a/b = 0 in all local rings $R_{\mathfrak{q}}$ such that $b, c \notin \mathfrak{q}$. Equivalently, $\mathfrak{q} \in D(b) \cap D(c)$. Then s is 0 on the neighbourhood of \mathfrak{p} given by $D(b) \cap D(c) \cap W$ whence [U, s] = 0 and f is injective.

We next show that f is surjective. Choose a fraction $a/b \in R_p$. Let U = D(b) and $s \in \mathcal{O}_X(U)$ be given by a/b. Then, clearly, f([U, s]) = a/b as desired.

Finally, we must show that this in fact a local isomorphism. It suffices to show that the set

$$\mathfrak{m} = \{ [U, s] \mid f([U, s]) = s(\mathfrak{p}) \in \mathfrak{p}_{\mathfrak{p}} \}$$

is the unique maximal ideal of $(\mathcal{O}_X)_{\mathfrak{p}}$. Let $I \triangleleft (\mathcal{O}_X)_{\mathfrak{p}}$ be an ideal not contained in \mathfrak{m} . We need to show that all elements of I are invertible. To this end, fix $[U, s] \in (\mathcal{O}_X)_{\mathfrak{p}}$. Then $f([U, s]) = s(\mathfrak{p}) \notin \mathfrak{p}_{\mathfrak{p}}$ and is thus invertible in $R_{\mathfrak{p}}$. Let $s(\mathfrak{p})^{-1}$ denote its inverse in $R_{\mathfrak{p}}$. Then since f is a ring isomorphism, $f^{-1}(s(\mathfrak{p}))$ is an inverse for [U, s] in $(\mathcal{O}_X)_{\mathfrak{p}}$ and we are done.

<u>Part 2:</u> Define a ring homomorphism

$$g: R_b \to \mathcal{O}_X(D(b))$$
$$\frac{a}{b^n} \mapsto \left(\text{sections defined by } \frac{a}{b^n}\right)$$

We claim that g is an isomorphism. We first show that it is injective. To this end, suppose that $g(a/b^n) = 0$. Then for all $\mathfrak{p} \in D(b)$, $a/b^n = 0$ in $R_{\mathfrak{p}}$. For such a \mathfrak{p} we have that there exists $c_{\mathfrak{p}} \notin \mathfrak{p}$ such that $c_{\mathfrak{p}}a = 0$. Define $I = (c_{\mathfrak{p}})_{\mathfrak{p} \in D(b)}$. Then $D(b) \cap V(I) = \emptyset$. Indeed

$$\mathfrak{p} \in D(b) \implies c_{\mathfrak{p}} \notin \mathfrak{p} \implies I \not\subseteq \mathfrak{p} \implies \mathfrak{p} \notin V(I)$$

Hence $V(I) \subseteq V((b))$ whence $\sqrt{I} \supseteq \sqrt{(b)}$. By definition of the radical, we thus have $b^r \in I$ for some $r \in \mathbb{N}$ so $b^r = \sum_i d_i c_{\mathfrak{p}_i}$. Multiplying by a we get

$$ab^r = \sum_i d_i a c_{\mathfrak{p}_i} = 0$$

And so $a/b^n = 0$ in A_b .

We must now show that g is surjective. To this end, choose a section $s \in \mathcal{O}_X(D(b))$ and let $\{U_i\}_{i \in I}$ be an open cover of D(b). Suppose that $s|_{U_i}$ is given by some a_i/e_i . We may assume that each $U_i = D(d_i)$ for some $d_i \in R$. From this we observe that $D(d_i) \subseteq D(e_i)$ and so $\sqrt{(d_i)} \subseteq \sqrt{(e_i)}$. By the definition of the radical, we have $d_i^{n_i} = c_i e_i$ for some $n_i \in \mathbb{N}$ and $c_i \in R$. We may replace

$$\frac{a_i}{e_i} = \frac{c_i a_i}{c_i e_i} = \frac{c_i a_i}{d_i^{n_i}}$$

Noting that $D(d_i) = D(d_i^{n_i})$ for all n_i , we may assume that $U_i = D(e_i)$. So then $D(b) = \bigcup_i D(e_i)$ whence

$$V((b)) = \bigcap_{i} V((e_i)) = V\left(\sum_{i} (e_i)\right)$$

Again applying the radical identity we have $\sqrt{(b)} = \sqrt{\sum(e_i)}$. This implies that $b^n = \sum_{\text{finite}} l_j e_j$ for some $l_j \in R$. Going back through the identities, we may then adjust the indexing so we have a finite union

$$D(b) = \bigcup_{\text{finite}} D(e_i)$$

Now by hypothesis, a_i/e_i and a_k/e_k define the same section on $D(e_i) \cap D(e_j) = D(e_ie_k)$. By Part 1, the homomorphism $R_{e_ie_k} \to \mathcal{O}_X(D(e_ie_k))$ is injective and so $a_i/e_i = a_k/e_k$ in $R_{e_ie_k}$. By definition of the ring of fractions, there exists an $n' \in \mathbb{N}$ such that

$$(e_i e_k)^{n'} (a_i e_k - a_k e_i) = e_k^{n'+1} e_i^{n'} a_i - e_i^{n'+1} e_k^{n'} a_k = 0$$

for all i, k. By equivalence, we may then assume that $a_i e_k = a_k e_i$. From this it follows that

$$e_k\left(\sum_i l_i a_i\right) = \sum_i l_i a_i e_k = \sum_i l_i a_k e_i = a_k \sum_i l_i e_i = a_k b^n$$

and so

$$\frac{a_k}{e_k} = \sum_i \frac{l_i a_i}{b^n}$$

Hence s is given by $\sum_{i} l_i a_i / b^n$ on D(b) and therefore g is surjective.

<u>Part 3:</u> This follows directly from Part 2 by taking b = 1.

1.4 Ringed Spaces

Definition 1.4.1. A ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings called the **structure sheaf** of X. We say that (X, \mathcal{O}_X) is a **locally** ringed space if $(\mathcal{O}_X)_{\mathfrak{p}}$ are local rings for all $\mathfrak{p} \in X$.

Definition 1.4.2. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism (f, φ) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ consists of

- 1. a continuous map $f: X \to Y$.
- 2. a morphism of sheaves $\varphi : \mathcal{O}_Y \to f_*\mathcal{O}_X$.

Furthermore, if (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are locally ringed spaces then φ is a morphism of locally ringed spaces if the induced homomorphism

$$(\mathcal{O}_Y)_{\mathfrak{q}} \to (\mathcal{O}_X)_{\mathfrak{p}}$$
$$[V,t] \mapsto [f^{-1}V,s]$$

is a local homomorphism for $\mathbf{q} = f(\mathbf{p})$. Finally, an **isomorphism** of (locally) ringed spaces is a morphism which has an inverse.

Theorem 1.4.3. Let R and S be rings, $(X = \text{Spec}(R), \mathcal{O}_X), (Y = \text{Spec}(S), \mathcal{O}_Y)$ ringed spaces and $\alpha : R \to S$ a homomorphism of rings. Then

- 1. (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are locally ringed spaces.
- 2. α induces a morphism $(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ of locally ringed spaces.
- 3. Any morphism of locally ringed spaces $(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ is induced by some ring homomorphism $\alpha : R \to S$.

Proof.

<u>Part 1:</u> This follows immediately from Theorem 1.3.6.

<u>Part 2:</u> We first define $f: Y \to X$ by setting $f(\mathfrak{p}) = \alpha^{-1}(\mathfrak{p})$ for $\mathfrak{p} \in Y$. It is easy to see that f is continuous. Indeed, given a closed set V(I), its inverse image under f is simply $V((\alpha I))$ which is again closed.

We now define φ . Recall that given $\mathfrak{p} \in Y$ with $\mathfrak{q} = f(\mathfrak{p})$ we have a local homomorphism

$$\begin{aligned} \alpha_{\mathfrak{p}} : R_{\mathfrak{q}} \to S_{\mathfrak{p}} \\ \frac{a}{b} \mapsto \frac{\alpha(a)}{\alpha(b)} \end{aligned}$$

Now, choose $s \in \mathcal{O}_X(U)$ for some open $U \subseteq X$. Recall that s is a function

$$s: U \to \bigcup_{\mathfrak{q} \in U} R_{\mathfrak{q}}$$

Define a section $t \in \mathcal{O}_X(f^{-1}U)$ by

$$t: f^{-1}U \to \bigcup_{\mathfrak{p}\in f^{-1}U}^{\cdot}S_{\mathfrak{p}}$$
$$\mathfrak{p}\mapsto \alpha_{\mathfrak{p}}(s(f(\mathfrak{p})))$$

If s is locally given by a/b then t is locally given by $\alpha(a)/\alpha(b)$. This gives a morphism of sheaves

$$(f,\varphi): (Y,\mathcal{O}_Y(U)) \to (X,\mathcal{O}_X(U))$$

as desired. Now, the homomorphism induced on stalks by φ is simply $\alpha_{\mathfrak{p}}$ and so this is indeed a morphism of locally ringed spaces.

<u>Part 3:</u>

Suppose $(f, \varphi) : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ is a morphism of locally ringed spaces. By Part 3 of Theorem 1.3.6, applying (f, φ) to the global section X yields a homomorphism of rings $\alpha : R \to S$. We claim that (f, φ) is induced by α .

To show this, fix $\mathfrak{p} \in Y$ and set $\mathfrak{q} = f(\mathfrak{p})$. Consider the commutative diagram

$$\begin{split} R &= \mathcal{O}_X(X) \xrightarrow{\alpha} \mathcal{O}_Y(Y) = S \\ & \downarrow^{\beta} & \downarrow^{\gamma} \\ R_{\mathfrak{q}} &= (\mathcal{O}_X)_{\mathfrak{q}} \xrightarrow{\alpha_{\mathfrak{p}}} (\mathcal{O}_Y)_{\mathfrak{p}} = S_{\mathfrak{p}} \end{split}$$

From this we may read off

$$\mathfrak{q} = \beta^{-1}(\mathfrak{q}_{\mathfrak{q}}) = \beta^{-1}(\alpha_{\mathfrak{p}}^{-1}(\mathfrak{p}_{\mathfrak{p}})) = \alpha^{-1}(\gamma^{-1}(\mathfrak{p}_{\mathfrak{p}})) = \alpha^{-1}(\mathfrak{p})$$

whence $f = \alpha^{-1}$. To see that φ is also induced by α , let $U \subseteq X$ be an open set and $\mathfrak{p} \in U$ with $\mathfrak{q} = f(\mathfrak{p})$. Consider the commutative diagram

Fix a section $s \in \mathcal{O}_X(U)$. Then this section is determined by all the values $s(\mathfrak{p}) \in \mathcal{O}_Y(f^{-1}U)$. The commutative diagram then makes it clear that φ is determined by α . \Box

2 Schemes

2.1 Definitions

Definition 2.1.1. Let (X, \mathcal{O}_X) be a locally ringed space. We say that (X, \mathcal{O}_X) is an **affine** scheme if it isomorphic to $(X = \operatorname{Spec}(R), \mathcal{O}_X)$ for some ring R. We say that (X, \mathcal{O}_X) is a scheme if for all $x \in X$ there exists an open neighbourhood $x \in U \subseteq X$ such that $(U, \mathcal{O}_X|_U)$ is an affine scheme. A **morphism** of schemes (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) is a morphism between them as locally ringed spaces. We denote by $\operatorname{Sch}(X)$ the category of schemes over X and their morphisms.

Remark. Henceforth, by an abuse of notation, an (affine) scheme (X, \mathcal{O}_X) will be written simply as X. The stalks $(\mathcal{O}_X)_x$ shall be written as $\mathcal{O}_{X,x}$ or simply \mathcal{O}_x .

Example 2.1.2. Let K be a field. Then $X = \operatorname{Spec}(K)$ is a scheme consisting of a single point (the only prime ideal of a field is the zero ideal). Furthermore, if L/K is a field extension then $Y = \operatorname{Spec}(L) \to X = \operatorname{Spec}(K)$ is a morphism of schemes.

Example 2.1.3. Let R be a discrete valuation ring with maximal ideal \mathfrak{m} . Then $\operatorname{Spec}(R) = \{0, \mathfrak{m}\}$. The stalks are given by $\mathcal{O}_0 = R_0 = \operatorname{Frac}(R)$ and $\mathcal{O}_{\mathfrak{m}} = R_{\mathfrak{m}}$.

Example 2.1.4. Let $X = \operatorname{Spec}(\mathbb{Z}) = \{0, (2), (3), (5), \ldots\}$. The stalk at x = 0 is simply \mathbb{Q} . If x = (p) for some prime number p then $\mathcal{O}_x = \mathbb{Z}_{(p)}$. Note that if \mathfrak{m}_p is the maximal ideal of $\mathbb{Z}_{(p)}$ then $\mathbb{Z}_{(p)}/\mathfrak{m}_p \cong \mathbb{F}_p$.

Furthermore, if R is any ring then the characteristic ring homomorphism

$$\mathbb{Z} \to R$$
$$n \mapsto n \cdot 1_R$$

induces a morphism of schemes $\operatorname{Spec}(R) \to \operatorname{Spec}(\mathbb{Z})$.

Definition 2.1.5. Let R be a ring. We define **affine n-space** over R, denoted \mathbb{A}_R^n , to be

$$\mathbb{A}^n_R = \operatorname{Spec}(R[t_1, \dots, t_n])$$

Example 2.1.6 (Classical Algebraic Geometry). Let K be an algebraically closed field and $I \triangleleft K[t_1, \ldots, t_n]$ an ideal. Since $K[t_1, \ldots, t_n]$ is Noetherian, we have that $I = (f_1, \ldots, f_r)$ for some $f_i \in K[t_1, \ldots, t_n]$. Consider the set

$$S = \{ (a_1, \dots, a_n) \mid a_i \in K, f_j(a_1, \dots, a_n) = 0 \ \forall j \}$$

Then there exists a one-to-one correspondence between S and the set of maximal ideals in $K[t_1, \ldots, t_n]$ containing I (in other words, ideals of the form $(t_1-a_1, \ldots, t_n-a_n)$). classical algebraic geometry studies S whereas modern algebraic geometry studies $\text{Spec } K[t_1, \ldots, t_n]/I$.

Definition 2.1.7. Let X be a scheme. We say that X is **irreducible** if for all non-empty open sets $U, V \subseteq X$ we have $U \cap V \neq \emptyset$. Equivalently, if $X = Y \cup Z$ for Y and Z closed then either X = Y or X = Z.

Definition 2.1.8. Let R be a ring. We say that R is **reduced** if nil(R) = 0. Furthermore, if X is a scheme, we say that X is **reduced** if for all open sets $U \subseteq X$, $\mathcal{O}_X(U)$ is reduced.

Definition 2.1.9. Let X be a scheme. We say that X is **integral** if for all open sets $U \subseteq X$, $\mathcal{O}_X(U)$ is an integral domain.

Proposition 2.1.10. Let X = Spec(R) be an affine scheme for some ring R. Then

- 1. X is irreducible if and only if nil(R) is a prime ideal of R.
- 2. X is reduced if and only if R is reduced.
- 3. X is irreducible and reduced if and only if R is an integral domain.

Proof.

<u>Part 1:</u> We have that X is irreducible if and only if $X = V(I) \cup V(J)$ implies that X = V(I)or X = V(J). Recall that $V(I) \cup V(J) = V(IJ)$ and that $\operatorname{nil}(R)$ is the intersection of all prime ideals in a ring. From this we see that X is irreducible if and only $IJ \subseteq \operatorname{nil}(R)$ implies that $I \subseteq \operatorname{nil}(R)$ or $J \subseteq \operatorname{nil}(R)$. But this is exactly what it means for $\operatorname{nil}(R)$ to be prime.

<u>Part 2:</u> The forward direction is just by definition so assume that R is reduced. Let $s \in \mathcal{O}_X(U)$ be nilpotent. Then for all $x \in U$, the image of s in $\mathcal{O}_x = R_x$ is nilpotent. By hypothesis, R_x is reduced so s = 0 in R_x for all $x \in U$. Since \mathcal{O}_X is a sheaf, it follows that s = 0 in $\mathcal{O}_X(U)$ whence $\mathcal{O}_X(U)$ is reduced.

<u>Part 3:</u> We have that X is irreducible and reduced if and only if nil(R) is prime and nil(R) = 0. But this is equivalent to R being and integral domain.

Theorem 2.1.11. Let X be a scheme. Then X is integral if and only if it is irreducible and reduced.

Proof. First suppose that X is integral. Then clearly X is reduced. Now assume that there exists open sets $U, V \subseteq X$ such that $U \cap V = \emptyset$. Then $\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \oplus \mathcal{O}_X(V)$ since \mathcal{O}_X is a sheaf. But the direct sum of two non-zero rings can never be an integral domain which is a contradiction.

Conversely, suppose that X is irreducible and reduced. We first claim that for all open sets $U \subseteq X$ and $x \in U$, there exists an open affine neighbourhood $x \in W \subseteq U$.

By the definition of a scheme, there exists an open affine $V = \operatorname{Spec}(R) \subseteq X$ such that $x \in V$. Then there exists $b \in R$ such that $x \in D(b) \subseteq U \cap V$. Now, as schemes, we have that $D(b) \cong \operatorname{Spec}(R_b)$ so the claim is proved.

Now suppose that $s, t \in \mathcal{O}_X(U)$ such that st = 0 with $s \neq 0$. We need to show that t = 0. By the claim, we can cover U by open affine sets $U = \bigcup V_i$ where $V_i = \operatorname{Spec}(R_i)$ for some ring R_i . Then for some $i, s|_{V_i} \neq 0$. Since X is irreducible and reduced, so is V_i . Proposition 2.1.10 then implies that R_i is an integral domain and so

$$st|_{V_i} = s|_{V_i} \cdot t|_{V_i} = 0$$

implies that $t|_{V_i} = 0$. We claim that in fact $t|_{V_i} = 0$ for all j.

Now, X is irreducible whence $V_i \cap V_j \neq \emptyset$ for all j. Since $t|_{V_i \cap V_j} = 0$, we must then have that t = 0 in \mathcal{O}_x for all $x \in V_i \cap V_j$. Note that $\mathcal{O}_x \cong (R_j)_x$ and the natural inclusion

$$R_j \to (R_j)_x$$
$$a \mapsto \frac{a}{1}$$

is injective. Since the image of $t|_{V_j}$ is 0 under this map, it follows that $t|_{V_j} = 0$ for all j. But \mathcal{O}_U is a sheaf whence t = 0. Hence $\mathcal{O}_X(U)$ is an integral domain and X is integral.

Definition 2.1.12. Let X be a scheme. We say that $\eta \in X$ is generic if $\overline{\{\eta\}} = X$.

Proposition 2.1.13. Let X be an integral scheme. Then X has a unique generic point.

Proof. Let U be any affine open set $U = \operatorname{Spec}(R)$ for some ring R. We claim that $\eta = 0 \triangleleft R$ is a generic point of U. Let $I \triangleleft R$ be an ideal. Then V(I) clearly never contains the zero ideal unless I = 0. Since $V(0) = \operatorname{Spec}(R)$, it follows that every non-empty open subset of U contains η which is exactly what it means for η to be dense in U. Now suppose that η' is any other generic point of U. Then, by definition, $\eta' \in V$ for all non-empty open subsets of U. Then the only I such that $\eta' \in V(I)$ is I = 0. Hence η' is a minimal prime ideal of R. Since X is integral, so is U when viewed as a scheme whence R is an integral domain. Since 0 is the unique minimal prime ideal of an integral domain, we must have that $\eta' = 0 = \eta$ and so U has a unique generic point.

Now, X is integral and, in particular, it is irreducible. This is equivalent to every nonempty open subset of X being dense in X. Since $\eta = 0$ is dense in all non-empty open subsets U when viewed as a scheme, η is thus also dense in X and we are done.

Proposition 2.1.14. Let X be an integral scheme and η its unique generic point. Then \mathcal{O}_{η} is a field called the **function field** of X and denoted K(X).

Proof. Let $U \subseteq X$ be any affine open set where $U = \operatorname{Spec}(R)$. Then $\mathcal{O}_{\eta} = (\mathcal{O}_X)_{\eta} = (\mathcal{O}_U)_{\eta} = R_{(0)} = \operatorname{Frac}(R)$.

Definition 2.1.15. Let X and Y be schemes and $f: Y \to X$ a morphism. We say that f is an **open immersion** if U := f(Y) is open in X and f induces an isomorphism of locally ringed spaces $(Y, \mathcal{O}_Y) \to (U, \mathcal{O}_X|_U)$. An **open subscheme** of X is any open immersion of some scheme Y to X.

Definition 2.1.16. Let X and Z be schemes. A closed immersion is a morphism of schemes $g: Z \to X$ such that

- 1. g(Z) is closed in X.
- 2. g induces a homeomorphism $Z \to g(Z)$.
- 3. $\mathcal{O}_X \to g_* \mathcal{O}_Z$ is a surjection.

A closed subscheme of X is any closed immersion from some scheme Z into X up to the following equivalence relation. Two closed immersions $g: Z \to X$ and $g': Z' \to X$ define the same closed subscheme if there exists an isomorphism $h: Z \to Z'$ such that the diagram

commutes.

Example 2.1.17. Let $X = \operatorname{Spec}(R)$ for some ring R and $I \triangleleft R$ an ideal. Then $R \rightarrow R/I$ gives a closed immersion $\operatorname{Spec}(R/I) \rightarrow \operatorname{Spec}(R)$.

2.2 Schemes Associated to Graded Rings

Definition 2.2.1. Let S be a ring. We say that S is **graded** if there exist a collection of rings $\{S_d\}_{d\in\mathbb{N}}$ such that $S = \bigoplus_{d\in\mathbb{N}} S_d$ and $S_dS_c \subseteq S_{d+c}$. If $s_d \in S_d$ then we say that s_d is homogeneous of degree d.

Example 2.2.2. $\mathbb{C}[t_1, \ldots, t_n]$ is a graded ring.

Definition 2.2.3. Let $S = \bigoplus_{d \in \mathbb{N}} S_n$ be a graded ring and $I \triangleleft S$ an ideal. We say that I is a **homogeneous** ideal if

$$I = \bigoplus_{d \in \mathbb{N}} I \cap S_d$$

Proposition 2.2.4. Let $S = \bigoplus_{d \in \mathbb{N}}$ be a graded ring and $I, J \triangleleft S$ homogeneous ideals. Then $I + J, IJ, I \cap J$ and \sqrt{I} are all homogeneous ideals.

Proof. We have that

$$I + J = \left(\bigoplus_{d \in \mathbb{N}} I \cap S_d\right) + \left(\bigoplus_{d \in \mathbb{N}} J \cap S_d\right) = \bigoplus_{d \in \mathbb{N}} (I + J) \cap S_d$$

A similar argument shows that IJ and $I \cap J$ are also homogeneous ideals.

To show that \sqrt{I} is homogeneous, choose $s \in \sqrt{I}$. Then $s^n \in I$ for some $n \in \mathbb{N}$. Without loss of generality, we may suppose that s^n is homogeneous of degree d with $s^n \in I_d$. Since I is homogeneous, we must have that $s \in I_{d/n}$. The elements of \sqrt{I} are thus homogeneous and we are done.

Proposition 2.2.5. Let $S = \bigoplus_{d \in \mathbb{N}} S_d$ be a graded ring and $\mathfrak{p} \triangleleft S$ a homogeneous ideal. If for all homogeneous ideals $I, J \triangleleft S$ we have that $IJ \subseteq \mathfrak{p}$ implies $I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p}$ then \mathfrak{p} is prime.

Proof. Let a and b be elements (not necessarily homogeneous) such that $ab \in \mathfrak{p}$. Suppose that neither a nor b is in \mathfrak{p} . Let $a = \sum_i a_i$ and $b = \sum_j b_j$ be their homogeneous expansions. Since $a \notin \mathfrak{p}$ and the terms in the expansion are eventually 0, there exists a maximum d such that $a_d \notin \mathfrak{p}$. Similarly, there exists a maximum e such that $b_e \notin \mathfrak{p}$.

Since $ab \in \mathfrak{p}$, all of its components are as well. The $(d+e)^{th}$ component of ab is given by $\sum_{i+j=d+e} a_i b_j$. Each pair (i, j) except (d, e) must satisfy either i > d or j > e. The maximality of d and e then imply that each $a_i b_j \in \mathfrak{p}$. This then implies that $a_i b_j \in \mathfrak{p}$. By hypothesis, either a_i or b_j is in \mathfrak{p} which is a contradiction.

Definition 2.2.6. Let S be a graded ring and $\mathfrak{p} \triangleleft S$ a homogeneous prime ideal. We define the **homogeneous localisation** of S at \mathfrak{p} by

$$S_{(\mathfrak{p})} = \left\{ \left. \frac{a}{b} \in S_{\mathfrak{p}} \right| a, b \text{ are homogeneous and have the same degree} \right\}$$

Similarly, given a homogeneous element of non-zero degree $b \in S$ we define

$$S_{(b)} = \left\{ \left. \frac{a}{b^r} \in S_b \right| a, b^r \text{ are homogeneous and have the same degree} \right\}$$

Definition 2.2.7. Let $S = \bigoplus_{d \in \mathbb{N}} S_d$ be a graded ring and $S_+ = \bigoplus_{d>0} S_d$. We define the homogeneous spectrum of S to be the set

 $\operatorname{Proj}(S) = \{ \mathfrak{p} \triangleleft S \mid \mathfrak{p} \text{ is homogeneous and } S_+ \not\subseteq \mathfrak{p} \}$

Furthermore, for all $I \triangleleft S$, define

$$V_+(S) = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid I \subseteq \mathfrak{p} \}$$

Lemma 2.2.8. Let S be a graded ring. Then

- 1. For all homogeneous ideals $I, J \triangleleft S$ we have $V_+(IJ) = V_+(I \cap J) = V_+(I) \cup V_+(J)$.
- 2. For any family of homogeneous ideals I_{α} of S we have $V_{+}(\sum_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V_{+}(I_{\alpha})$.

Proof. Follows a similar argument to the affine case.

Definition 2.2.9. Let S be a graded ring. We can define a topology on $X = \operatorname{Proj}(S)$ called the **Zariski** topology by taking the closed sets to be the $V_+(I)$ for all $I \triangleleft S$. Moreover, we define the **structure sheaf** of X, denoted \mathcal{O}_X to be the sheaf of rings

$$\mathcal{O}_X(U) = \begin{cases} s: U \to \bigcup_{\mathfrak{p} \in U} S_{(\mathfrak{p})} \\ s: U \to \bigcup_{\mathfrak{p} \in U} S_{(\mathfrak{p})} \end{cases} & \exists \text{ open } \mathfrak{p} \in W \subseteq U \text{ such that } \forall \mathfrak{q} \in W, \\ s(\mathfrak{q}) = \frac{a}{b} \in S_{(\mathfrak{q})} \text{ where } a, b \in S \text{ are homogeneous of the same degree} \end{cases}$$

Proposition 2.2.10. Let S be a graded ring and $X = \operatorname{Proj}(S)$. Then

$$\{ D_+(b) = X \setminus V_+((b)) \mid b \in S \text{ homogeneous} \}$$

is a basis for the Zariski topology on X.

Proof. This is proven in a similar way to the affine case.

Theorem 2.2.11. Let $S = \bigoplus_{d \in \mathbb{N}} S_d$ be a graded ring and $X = \operatorname{Proj}(S)$. Then

- 1. $(\mathcal{O}_X)_{\mathfrak{p}} \cong S_{(\mathfrak{p})}$ for all $\mathfrak{p} \in X$.
- 2. For all homogeneous $b \in S_+$ there exists a natural isomorphism of locally ringed spaces between $D_+(b)$ and $\text{Spec}(S_{(b)})$.
- 3. (X, \mathcal{O}_X) is a scheme.

Proof.

<u>Part 1:</u> Similar argument to the affine case.

<u>Part 2:</u> First denote $U_b := D_+(b)$ and $Y := \text{Spec}(S_{(b)})$. We shall construct an isomorphism of locally ringed spaces

$$(f,\varphi): (U_b,\mathcal{O}_X|_{U_b}) \to (Y,\mathcal{O}_Y)$$

Note that we have natural homomorphisms of rings $S \to S_b$ and $S_{(b)} \hookrightarrow S_b$. We use these to define f as follows:

$$f: U_b \to Y$$
$$\mathfrak{p} \mapsto \mathfrak{p}_b \cap S_{(b)}$$

We first show that f is injective. Suppose that $f(\mathfrak{p}) = f(\mathfrak{q})$ for some $\mathfrak{p}, \mathfrak{q} \in U_b$. We need to show that $\mathfrak{p} = \mathfrak{q}$. To this end, fix $x \in \mathfrak{p}$. Let $x = \sum_i x_i$ be its homogeneous expansion. Since \mathfrak{q} is homogeneous, it suffices to show that each $x_i \in \mathfrak{q}$. By hypothesis, we have that

$$\mathfrak{p}_b \cap S_{(b)} = \mathfrak{q}_b \cap S_{(b)}$$

Now, we can always find $n, r \in \mathbb{N}$ such that $\deg(x_i^n) = \deg(b^r)$ so for such n and r, we have that $x_i^n/b^r \in \mathfrak{p}_b \cap S_{(b)}$. But then $x_i^n/b^r \in \mathfrak{q}_b \cap S_{(b)}$. This means that $x_i^n \in \mathfrak{q}$. Since \mathfrak{q} is prime, we thus have that $x_i \in \mathfrak{q}$ and so $\mathfrak{p} \subseteq \mathfrak{q}$. A similar argument gives us the reverse inclusion whence f is injective.

We next show that f is surjective. Fix $\mathfrak{q} \in Y = \operatorname{Spec}(S_{(b)})$. We need to exhibit $\mathfrak{p} \in U_b = D_+(b)$ such that $f(\mathfrak{p}) = \mathfrak{q}$. Define

$$I_m = \left\{ a \in S_m \mid \frac{a^{\deg(b)}}{b^m} \in \mathfrak{q} \right\}$$

We claim that $I = \bigoplus_{m \in \mathbb{N}} I_m$ is the desired element of U_b . We first show that I is an ideal. Let $r, s \in I_m$. Then clearly,

$$\frac{(r+s)^{2\deg(b)}}{b^{2m}} \in \mathfrak{q}$$

Since q is prime, it then follows that

$$\frac{(r+s)^{\deg(b)}}{b^m}\in\mathfrak{q}$$

And so I_m is an abelian group. It then follows immediately that I is a homogeneous ideal. To see that it is a prime ideal, suppose that $rs \in I$ for some homogeneous elements $r, s \in S$. Then

$$\frac{(rs)^{\deg(b)}}{b^{\deg(rs)}} = \frac{r^{\deg(b)}s^{\deg b}}{b^{\deg(r)}b^{\deg(s)}} = \frac{r^{\deg(b)}}{b^{\deg(r)}} \cdot \frac{s^{\deg(b)}}{b^{\deg(s)}}$$

From this we see that either $r \in I$ or $s \in I$ so I is prime. Now clearly, $b \notin I$ so, indeed, $I \in D_+(b)$. It then follows immediately that $f(I) = \mathfrak{q}$ thereby proving that f is bijective.

We now show that f is a homeomorphism. Note that $D_+(b) \cap V_+(I)$ for homogeneous ideals $I \triangleleft S$ are the closed sets of $D_+(b)$. Then

$$f(D_{+}(b) \cap V_{+}(I)) = V(I_{b} \cap S_{(b)})$$

The other direction is also clear so f is a homeomorphism.

We next show that there exists an isomorphism $\varphi : \mathcal{O}_{U_b}(U) \to \mathcal{O}_Y(f(U))$ for all open sets $U \subseteq U_b$. Observe that by Part 1, we have isomorphisms

$$(\mathcal{O}_X)_{\mathfrak{p}} \cong S_{(\mathfrak{p})} \cong (S_{(b)})_{f(\mathfrak{p})} \cong (\mathcal{O}_Y)_{f(\mathfrak{p})}$$

where the middle isomorphism is given by

$$\frac{a}{c}\mapsto \frac{a}{1}/\frac{c}{1}$$

This then induces an isomorphism on the level of sections and we are done.

<u>Part 3:</u> This follows from Part 1 and Part 2. Note that the condition $S_+ \not\subseteq \mathfrak{p}$ ensures that the open sets $D_+(b)$ cover $X = \operatorname{Proj}(S)$.

Example 2.2.12. Let R be a ring and $S = R[t_0, \ldots, t_n]$. Then S is a graded ring with homogeneous components S_d consisting of all homogeneous polynomials of degree d. We define **n-projective space** over R to be

$$\mathbb{P}^n_R = \operatorname{Proj}(S)$$

The open sets $D_+(t_0), \ldots, D_+(t_n)$ cover \mathbb{P}^n_R . By the above Theorem, we have that

$$D_+(t_i) \cong \operatorname{Spec}(S_{(t_i)}) \cong R\left[\frac{t_0}{t_i}, \dots, \frac{t_n}{t_i}\right] \cong \operatorname{Spec}(\mathbb{A}_R^n)$$

2.3 Fibred Products

Proposition 2.3.1. Let X be a topological space. Then Sch(X) has pullbacks (fibred products). In other words, given a commutative diagram

$$\begin{array}{ccc} Z & \longrightarrow & Y \\ \downarrow & & \downarrow^g \\ W & \stackrel{f}{\longrightarrow} & S \end{array}$$

of schemes over X, there exists a unique scheme, denoted $W \times_S Y$ such that we have a commutative diagram

and a unique morphism of schemes $Z \to WX_SY$. Categorically, $W \times_S Y$ is universal amongst all schemes Z that complete the above diagram to a commutative diagram.

Proof. First suppose that all schemes involved are affine so that S = Spec(A), W = Spec(B) and Y = Spec(C) for some rings A, B and C. Let Z = Spec(D) for some ring D. A commutative diagram

yields a commutative diagram of rings

by reversing the direction of the arrows. By the universal property of tensor products, there exists a unique homomorphism of A-modules $B \otimes_A C \to D$ such that the diagram

commutes. Define $X \times_S Y = \text{Spec}(B \otimes_A C)$. Then we get a commutative diagram

as desired. The proof of the general case is omitted.

Definition 2.3.2. Let X and Y be schemes and $f : X \to Y$ be morphisms. Given $y \in Y$, let \mathfrak{m}_y be the maximal ideal of \mathcal{O}_y and $k(y) = \mathcal{O}_y/\mathfrak{m}_y$ the residue field of y in Y. We define the **fibre** of f over y to be

$$X_y = \operatorname{Spec}(k(y)) \times_Y X$$

Furthermore, if Y is integral and η is the generic point of Y then we say that X_{η} is a **generic** fibre of f.

Example 2.3.3. Let $R = \mathbb{C}[t_1, t_2, t_3]/(t_2t_3 - t_1)$ and $X = \operatorname{Spec}(R)$. The homomorphism of rings

$$\mathbb{C}[u] \to R$$
$$u \mapsto [t_3]$$

induces a morphism of schemes $X \to Y = \operatorname{Spec}(\mathbb{C}[u]) = \mathbb{A}^1_{\mathbb{C}}$. Let $y = (u - a) \triangleleft \mathbb{C}[u]$. We have that

$$k(y) = \mathcal{O}_y/\mathfrak{m}_y \cong \frac{\mathbb{C}[u]_{(u-a)}}{(u-a)_{(u-a)}} \cong \mathbb{C}[u]_{(u-a)} \cong \mathbb{C}$$

The fibre X_y is given by

$$X_y = \operatorname{Spec}\left(\frac{\mathbb{C}[u]}{(u-a)} \otimes_{\mathbb{C}[u]} R\right)$$
$$\cong \operatorname{Spec}\left(\frac{R}{(u-a)R}\right)$$
$$\cong \frac{\mathbb{C}[t_1, t_2]}{(at_2 - t_1^2)}$$

In particular, if a = 0, $X_y = \text{Spec}\left(\frac{\mathbb{C}[t_1, t_2]}{(t_1^2)}\right)$ which is not reduced.

2.4 \mathcal{O}_X -modules

Definition 2.4.1. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{F} a sheaf of modules. We say that \mathcal{F} is an \mathcal{O}_X -module if for all open sets $U \subseteq X$, $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module and for all inclusions of open sets $V \subseteq U$ and $s \in \mathcal{O}_X(U), m \in \mathcal{F}(U)$ we have $(sm)|_V = s|_V \cdot m|_V$.

Definition 2.4.2. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. A morphism of \mathcal{O}_X -modules $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves such that for all open sets $U \subseteq X, \mathcal{F}(U) \to \mathcal{G}(U)$ is a homomorphism of $\mathcal{O}_X(U)$ -modules.

Remark.

- If $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of \mathcal{O}_X -modules then ker φ and im φ are \mathcal{O}_X -modules.
- If \mathcal{F}_i is a family of \mathcal{O}_X -modules then $\bigoplus_i \mathcal{F}_i$ is an \mathcal{O}_X -module defined to be the sheaffication of the presheaf given by $\bigoplus \mathcal{F}_i(U)$.
- If \mathcal{F} and \mathcal{G} are \mathcal{O}_X -modules then $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is an \mathcal{O}_X -module defined to be the sheaffication of the presheaf given by $\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$.
- If $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces and \mathcal{F} is an \mathcal{O}_X -module then $f_*\mathcal{F}$ is an \mathcal{O}_Y -module.

Definition 2.4.3. Let $X = \operatorname{Spec}(R)$ be an affine scheme and M an R-module. We define the \mathcal{O}_X -module \widetilde{M} by

$$\widetilde{M}(U) = \left\{ s: U \to \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \middle| \begin{array}{c} \forall \, \mathfrak{p} \in U, s(\mathfrak{p}) \in M_{\mathfrak{p}} \\ \exists \, \text{open} \, \mathfrak{p} \in W \subseteq U \text{ such that} \, \forall \, \mathfrak{q} \in W, \\ s(\mathfrak{q}) = \frac{m}{a} \in M_{\mathfrak{q}} \text{ where } m \in M, a \in R \end{array} \right\}$$

Theorem 2.4.4. Let X = Spec(R) be an affine scheme and M an R-module. Then

- 1. \widetilde{M} is indeed an \mathcal{O}_X -module.
- 2. $(\widetilde{M})_{\mathfrak{p}} \cong M_{\mathfrak{p}}$ for all $\mathfrak{p} \in X$.

- 3. $\widetilde{M}(D(b)) \cong M_b$.
- 4. $\widetilde{M}(X) \cong M$.

Proof. All proved in the same way as for the case where M = R.

Remark. Let $X = \operatorname{Spec}(R)$. If $M \to N$ is a homomorphism of R-modules then we get a morphism of \mathcal{O}_X -modules $\widetilde{M} \to \widetilde{N}$. So if

 $0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0$

is a complex of R-modules we then have a complex of sheaves

$$0 \longrightarrow \widetilde{K} \longrightarrow \widetilde{M} \longrightarrow \widetilde{N} \longrightarrow 0$$

Where the first complex is exact if and only if the second complex is exact. Indeed, the complex of R-modules is exact if and only if

 $0 \longrightarrow K_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}} \longrightarrow 0$

is exact for all $\mathfrak{p} \in X$. This is exact if and only if

$$0 \longrightarrow \widetilde{K}_{\mathfrak{p}} \longrightarrow \widetilde{M}_{\mathfrak{p}} \longrightarrow \widetilde{N}_{\mathfrak{p}} \longrightarrow 0$$

is exact for all $\mathfrak{p} \in X$. This is exact if and only if the original complex of sheaves is exact.

Definition 2.4.5. Let $f : X \to Y$ be a map of topological spaces and \mathcal{G} a sheaf on Y. We define the **inverse image** of \mathcal{G} under f, denoted $f^{-1}\mathcal{G}$, to be the sheafification of the presheaf given by

$$U \mapsto \varinjlim_{V \supseteq F(U)} \mathcal{G}(V)$$

where $U \subseteq X$ is open.

Remark. Elements of the direct limit can be represented by equivalence classes of pairs [V, t] where $f(U) \subseteq V$ and $t \in \mathcal{G}(V)$ and the equivalence relation is given by $(V, t) \sim (V', t)$ if and only if there exists an open $f(U) \subseteq W \subseteq V \cap V'$ such that $t|_W = t'|_W$.

Definition 2.4.6. Let $f : X \to Y$ be a morphism of ringed spaces and \mathcal{G} an \mathcal{O}_Y -module. We define the **pullback** of \mathcal{G} under f, denoted $f^*\mathcal{G}$, to be

$$f^*\mathcal{G} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{G}$$

Theorem 2.4.7. Let $\alpha : R \to S$ be a ring homomorphism and $f : X = \text{Spec}(S) \to Y = \text{Spec}(R)$ the induced morphism of schemes.

1. If M and N are R-modules then

$$\widetilde{M} \otimes_{\mathcal{O}_Y} \widetilde{N} \cong \widetilde{M \otimes_R N}$$

2. If $\{M_i\}$ is a family of R-modules then

$$\bigoplus \widetilde{M}_i = \bigoplus \widetilde{M}_i$$

3. If L is an S-module then $f_*\widetilde{L} \cong \widetilde{RL}$ where RL is L considered as an R-module via α .

4. If M is an R-module then $f^*\widetilde{M} \cong \widetilde{S \otimes_R M}$.

Proof. We give the proof of Part 1. Part 2 is analogous and the others are omitted.

Let \mathcal{F} be the presheaf given by $\mathcal{F}(U) = M(U) \otimes_{\mathcal{O}_Y(U)} N(U)$. We shall construct an isomorphism of sheaves $\varphi : \mathcal{F} \to \widetilde{M \otimes_R N}$. Fix an open subset $U \subseteq X$ and choose $s \in \widetilde{M}(U)$ and $t \in \widetilde{N}(U)$. Define

$$r: U \to \bigcup_{\mathfrak{p} \in U} (M \otimes_R N)_{\mathfrak{p}} = \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \otimes_R N_{\mathfrak{p}}$$
$$\mathfrak{p} \mapsto s(\mathfrak{p}) \otimes t(\mathfrak{p})$$

If s is locally given by m/a and t is locally given by n/b then r is locally given by $(m \otimes n)/ab$. Now, the mapping $(s,t) \to r$ is bilinear and hence induces a homomorphism of R-modules

$$\varphi_U: \mathcal{F}(U) \to \widetilde{M \otimes_R N}(U)$$

This then induces a morphism of presheaves $\varphi : \mathcal{F} \to \widetilde{M \otimes_R N}$ which in turn gives rise to a morphism of sheaves $\varphi^+ : \mathcal{F}^+ \to \widetilde{M \otimes_R N}$.

Given $\mathfrak{p} \in X$, we have that

$$\varphi_{\mathfrak{p}}^{+} = \varphi_{\mathfrak{p}} : \mathcal{F}_{\mathfrak{p}} = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N_{\mathfrak{p}} \to \widetilde{M \otimes_{R} N_{\mathfrak{p}}} = (M \otimes_{R} N)_{\mathfrak{p}}$$

is an isomorphism at the level of stalks. This then implies that φ is an isomorphism and we are done.

2.5 Quasi-coherent sheaves

Definition 2.5.1. Let X be a scheme and \mathcal{F} an \mathcal{O}_X -module. We say that \mathcal{F} is **quasicoherent** if for all open affine $U = \operatorname{Spec}(R) \subseteq X$, $\mathcal{F}|_U = \widetilde{M}$ for some *R*-module *M*. Furthermore, we say that \mathcal{F} is **coherent** if *M* can be chosen to be finitely generated over *R*.

Example 2.5.2. Let X be a scheme. Then \mathcal{O}_X is coherent. Indeed, for all open affine sets $U = \operatorname{Spec}(R)$ we have $\mathcal{O}_X|_U = \widetilde{R}$.

Example 2.5.3. Let R be a discrete valuation ring and set $X = \operatorname{Spec}(R) = \{0, \mathfrak{m}\}$. Define an \mathcal{O}_X -module \mathcal{G} of X by setting $\mathcal{F}(\{0\}) = \operatorname{Frac}(R)$ and $\mathcal{F}(X) = 0$. Then \mathcal{G} is not quasi-coherent. Indeed, if $U \subseteq X$ is open affine containing \mathfrak{m} then U = X. If \mathcal{G} were to be quasi-coherent, we would have that $\mathcal{G} = \widetilde{M}$ for some R-module M. But then $M = \mathcal{F}(X) = 0$ which is a contradiction.

Lemma 2.5.4. Let $X = \operatorname{Spec}(R)$ be an affine scheme and \mathcal{F} an \mathcal{O}_X -module. Let $M = \mathcal{F}(X)$. Then there exists a natural morphism of \mathcal{O}_X -modules $f : \widetilde{M} \to \mathcal{F}$.

Proof. For all $a \in R$, define a homomorphism

$$M_a \to \mathcal{F}(D(a))$$

 $\frac{m}{a^r} \to \frac{1}{a^r} \cdot m|_{D(a)}$

This induces a morphism of \mathcal{O}_X -modules $\widetilde{M} \to \mathcal{F}$. Now, each open set $U \subseteq X$ is covered by open sets of the form $D(a_i)$. For each section $s \in \widetilde{M}(U)$, consider images of $s|_{D(a_i)}$ and glue them together to get a section in $\mathcal{F}(U)$ and call it image of s. \Box **Corollary 2.5.5.** Let X = Spec(R) be an affine scheme and M an R-module. If $a \in R$ then

$$\widetilde{M}|_{D(a)} \cong \widetilde{M}_a$$

as \mathcal{O}_X -modules.

Proof. By Lemma 2.5.4, we have a morphism of \mathcal{O}_X -modules

$$\varphi: \widetilde{M}_a \to \widetilde{M}|_{D(a)}$$

Now, for all $\mathfrak{p} \in D(a)$ we have that $\varphi_{\mathfrak{p}} : (\widetilde{M})_a)_{\mathfrak{p}} \to (\widetilde{M}|_{D(a)})_{\mathfrak{p}}$ is an isomorphism. This implies that φ itself is an isomorphism.

Definition 2.5.6. Let X be a scheme. We say that X is **Noetherian** if X can be covered by finitely many open affine subschemes U_1, \ldots, U_r such that for all $i, U_i = \text{Spec}(R_i)$ for some Noetherian R_i .

Theorem 2.5.7. Let X be a scheme and \mathcal{F} a quasi-coherent \mathcal{O}_X -module. If $U = \operatorname{Spec}(R) \subseteq X$ is open affine then $\mathcal{F}|_U \cong \widetilde{M}$ for some R-module M. Furthermore, if X is Noetherian and \mathcal{F} is coherent, M can be chosen to be finitely generated.

Proof. Fix an open affine set $U = \operatorname{Spec}(R) \subseteq X$. By definition, for all $x \in U$, there exists an open affine neighbourhood of $X, V = \operatorname{Spec}(B)$ such that $\mathcal{F}|_V \cong \widetilde{N}$ for some *B*-module *N*. We can always find a $b \in B$ such that $x \in D_V(b)$ where $D_V(b)$ is understood as taking the open set D(b) with respect to *V*. By the previous corollary, we have that $\mathcal{F}|_{D(b)} \cong \widetilde{N}_b$ so we may assume that $V \subseteq U$. This allows us to replace *X* with *U* and so we can just suppose that $X = \operatorname{Spec}(R)$ is affine.

Write $X = \bigcup D(a_i)$ as a finite union such that $\mathcal{F}|_{D(a_i)} \cong \widetilde{M}_i$ for some R_{a_i} -module M_i . Now, denote $f_i : D(a_i) \hookrightarrow X, f_{ij} : D(a_i a_j) \hookrightarrow X, \mathcal{G} = \bigoplus_i (f_i)_* \mathcal{F}|_{D(a_i)}$ and $\mathcal{H} = \bigoplus_{i,j} (f_{ij})_* \mathcal{F}|_{D(a_i a_j)}$. Consider the sequence of sheaves

$$0 \longrightarrow \mathcal{F} \stackrel{\varphi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H}$$

where φ_U is the homomorphism given by $s \mapsto (s|_{U \cap D(a_i)})_i$ and ψ_U is the homomorphism given by $(s_i) \mapsto (s_i|_{U \cap D(a_ia_j)} - s_j|_{U \cap D(a_ia_j)})_{i,j}$. Then the exactness of this sequence follows from the fact that \mathcal{F} is a sheaf.

Note that $\mathcal{F}_{D(a_i)} \cong \widetilde{M}_i$ and $\mathcal{F}|_{D(a_i a_j)} \cong \widetilde{M}_{i,j}$ for some $A_{a_i a_j}$ -module M_{ij} . Moreover, $(f_i)_* \widetilde{M}_i = {}_R \widetilde{M}_i$ and $(f_{ij})_* \widetilde{M}_{ij} = {}_R \widetilde{M}_{ij}$. The exact sequence is thus

$$0 \longrightarrow \mathcal{F} \stackrel{\varphi}{\longrightarrow} \bigoplus_{i \ R} \widetilde{M_i} \stackrel{\psi}{\longrightarrow} \bigoplus_{i,j \ R} \widetilde{M_{i,j}}$$

Taking global sections of the exact sequence, we thus have a second exact sequence

$$0 \longrightarrow \mathcal{F}(X) \xrightarrow{\varphi_X} \bigoplus_{i \in \mathbb{R}} M_i \longrightarrow \bigoplus_{i,j \in \mathbb{R}} M_{i,j}$$

Taking \sim , we then get an exact sequence

$$0 \longrightarrow \widetilde{\mathcal{F}(X)} \xrightarrow{\varphi_X} \bigoplus_{i \in R} \widetilde{M_i} \longrightarrow \bigoplus_{i,j \in R} \widetilde{M_{i,j}}$$

Hence $\mathcal{F} \cong \ker \varphi \cong \widetilde{\mathcal{F}}$ and we are done. The statement for coherent \mathcal{O}_X -modules on Noetherian schemes follows by the same argumentation.

Theorem 2.5.8. Let X be a scheme and $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of quasi-coherent \mathcal{O}_X -modules. Then ker φ and im φ are quasi-coherent. Furthermore, if X is Noetherian and \mathcal{F} and \mathcal{G} are coherent then ker φ and im φ are coherent.

Proof. Let $U = \operatorname{Spec}(R) \subseteq X$ be an open affine set. By Theorem 2.5.7 $\mathcal{F}|_U \cong \widetilde{M}$ and $\mathcal{G}|_U \cong \widetilde{N}$ for some *R*-modules *M* and *N*. Then φ induces a homomorphism of *R*-modules $\beta : M = \mathcal{F}(U) \to N = \mathcal{G}(U)$. Let $K = \ker \beta$. We have an exact sequence

 $0 \longrightarrow K \longrightarrow M \stackrel{\varphi}{\longrightarrow} N$

Passing to \sim , we get an exact sequence

 $0 \longrightarrow \widetilde{K} \longrightarrow \widetilde{M} \xrightarrow{\varphi|_U} \widetilde{N}$

And so $(\ker \varphi)|_U \cong \widetilde{K}$ and $\ker \varphi$ is quasi-coherent. A similar argument proves the result for $\operatorname{im} \varphi$ and the Noetherian case.

Theorem 2.5.9. Let $f : X \to Y$ be a morphism of schemes, \mathcal{F} an \mathcal{O}_X -module and \mathcal{G} an \mathcal{O}_Y -module. We have that

- 1. if \mathcal{G} is quasi-coherent then $f^*\mathcal{G}$ is quasi-coherent.
- 2. if \mathcal{G} is coherent then $f^*\mathcal{G}$ is coherent.
- 3. if \mathcal{F} is quasi-coherent and
 - for all $y \in Y$ there exists an open affine neighbourhood of $y \ W \subseteq Y$ such that $f^{-1}W = \bigcup_{i=1}^{n} U_i$ for some open affine U_i .
 - for all $i, j, U_i \cap U_j = \bigcup_{k=1}^m U_{i,j,k}$ for some open affine $U_{i,j,k}$.

then $f_*\mathcal{F}$ is quasi-coherent.

Proof.

<u>Part 1:</u> Since quasi-coherency is a local property, we may assume that Y is affine. Then \mathcal{G} is given by some R-module M. If $U = \operatorname{Spec}(B) \subseteq X$ is open affine, Theorem 2.4.7 implies that

$$f^*\mathcal{G}|_U \cong \widetilde{M \otimes_R B}$$

which is a *B*-module and so $f^*\mathcal{G}$ is quasi-coherent.

<u>Part 2:</u> We follow the same argumentation as above. Since $f^*\mathcal{G}$ is coherent, M is finitely generated over R. Hence $M \otimes_R B$ is finitely generated over B and $f^*\mathcal{G}$ is coherent.

<u>Part 3:</u> As usual, we may assume that Y is affine. Let $f_i : U_i \hookrightarrow X, f_{i,j,k} : U_{i,j,k} \hookrightarrow X, \mathcal{G} = \bigoplus_{i=1}^n (f_i)_* (\mathcal{F}|_{U_i})$ and $\mathcal{H} = \bigoplus_{i,j,k} (f_{i,j,k})_* (\mathcal{F}|_{U_{i,j,k}})$. We then have a sequence of sheaves

$$0 \longrightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H}$$

where φ_U is given by $s \mapsto (s|_{U_i})_i$ and ψ_U is given by $(s_i)_i \mapsto (s_i|_{U_{i,j,k}} - s_j|_{U_{i,j,k}})$. Then this sequence is exact since \mathcal{F} is a sheaf. Taking pushforwards yields an exact sequence

$$0 \longrightarrow f_* \mathcal{F} \xrightarrow{\varphi} f_* \mathcal{G} \xrightarrow{\psi} f_* \mathcal{H}$$

Note that

$$f_*\mathcal{G} = \bigoplus_i (f_*)(f_i)_*(\mathcal{F}|_{U_i})$$

and similarly for $f_*\mathcal{H}$. This implies that both $f_*\mathcal{G}$ and $f_*\mathcal{H}$ are quasi-coherent as they are both given by modules as a result of Theorem 2.4.7. $f_*\mathcal{F}$ is thus the kernel of a morphism of quasi-coherent \mathcal{O}_X -modules whence Theorem 2.5.8 implies that $f_*\mathcal{F}$ is quasi-coherent. \Box

Definition 2.5.10. Let X be a scheme. An ideal sheaf I of X is a subsheaf $I \subseteq \mathcal{O}_X$.

Theorem 2.5.11. Let X be a scheme. Then there is a one-to-one correspondence between the quasi-coherent ideal sheaves of X and the closed subschemes of X. Moreover, if X is Noetherian then the same is true for coherent ideal sheaves.

Proof. Let Y be a closed subscheme of X and let $f : Y \to X$ be a representative closed immersion of Y. By definition, we have that f maps Y homeomorphically onto a closed subset of X and that the corresponding morphism of sheaves $\varphi : \mathcal{O}_X \to f_*\mathcal{O}_Y$ is a surjection. Let $\mathcal{I} = \ker \varphi$. Then \mathcal{I} is clearly an ideal sheaf. We claim that \mathcal{I} is in fact quasi-coherent. Now, \mathcal{O}_X is itself quasi-coherent so by Theorem 2.5.9, it suffices to show that $f_*\mathcal{O}_Y$ is quasi-coherent.

Assume that $X = \operatorname{Spec}(R)$ is affine. Let $\{U_i\}$ be an open affine covering of Y and choose open affine $W_i \subseteq X$ such that $U_i = Y \cap W_i$ where Y is identified with a closed subset of X via f. We can cover X and, in particular, each W_i , by open affine sets of the form D(b) so that we have a family of elements $\{b_\alpha\}$ such that for all α either $D(b_\alpha) \subseteq X \setminus Y$ or $D(b_\alpha) \subseteq W_i$ for some i. Since $X = \bigcup_{\alpha} D(b_\alpha)$, we have that $\sum(b_\alpha) = R$. Indeed, if this weren't the case then $\sum(b_\alpha)$ would be contained in some maximal ideal of R which is prime and thus not contained in any of the $D(b_\alpha)$. $\sum(b_\alpha)$ is thus finitely generated as an ideal and we may assume that there are only finitely many of the b_α , say b_1, \ldots, b_n . Now, for all α , $f^{-1}D(b_\alpha)$ is an open affine subscheme of some U_i and thus of Y. Furthermore, $f^{-1}D(b_\alpha) \cap f^{-1}D(b_\beta) = f^{-1}D(b_\alpha b_\beta)$ and so the conditions of Part 3 of Theorem 2.5.9 are satisfied whence $f_*\mathcal{O}_Y$ is quasi-coherent.

Conversely, let $\mathcal{I} \subseteq \mathcal{O}_X$ be a quasi-coherent ideal sheaf. For all open affine sets $U = \operatorname{Spec}(R)$, we have that $\mathcal{I}|_U = \widetilde{I}$ for some ideal $I \triangleleft R$. Indeed, the *R*-modules contained in *R* are exactly the ideals of *R*. We shall construct a corresponding closed subscheme of *X* locally. Given an open affine set $U \subseteq X$ such that $\mathcal{I}|_U = \widetilde{I}$, define $Y_U = V_U(I) :=$ $\{\mathfrak{p} \in V(I) \mid \mathfrak{p} \in U\}$. Let *Y* be the union of all such Y_U ; this set shall be the topological structure of the closed subscheme. We must first check that *Y* is well-defined - it is not yet clear that on $U \cap U'$ this construction is independent of working with either *U* or *U'*. In other words, given open affine sets $U = \operatorname{Spec}(R), U' = \operatorname{Spec}(R') \subseteq X$, we must check that $Y_U \cap U' = Y_{U'} \cap U$. To this end, choose $\mathfrak{p} \in Y_U \cap U'$. Since $U \cap U'$ is again affine, there exists some $b' \in R'$ such that $\mathfrak{p} \in D_{U'}(b') \subseteq U$. Now, $\mathcal{O}_{U'}(D_{U'}(b')) = R'_{b'}$ and $\mathcal{O}_U(U) = R$ so we get a homomorphism of rings $\theta : R \to R'_{b'}$. On the other hand, we have the canonical homomorphism $R' \to R'_{b'}$. Then $\langle \theta(I) \rangle = I'_{b'}$. Hence if $I \subseteq \mathfrak{p}$ then $I'_{b'} \subseteq \mathfrak{p}$ whence $I \subseteq \mathfrak{p}$ so that $\mathfrak{p} \in Y_{U'} \cap U$. By symmetry, it then follows that $Y_U \cap U' = Y_{U'} \cap U$ for all affine sets $U, U' \subseteq X$.

Let \mathcal{G} denote the sheafification of the presheaf given by $U \mapsto \mathcal{O}_X(U)/\mathcal{I}(U)$. Since $Y \subseteq X$ is a closed subspace, it follows that $\mathcal{G}|_{X\setminus Y} = 0$. Hence $\mathcal{G} = f_*\mathcal{O}_Y$ for some sheaf \mathcal{O}_Y where $f: Y \hookrightarrow X$ is the inclusion.

In particular, \mathcal{O}_Y is given on open sets $W \subseteq Y$ by writing $Y = U \cap X$ for some open set U of X and setting $\mathcal{O}_Y = \mathcal{G}(U)$. This is well-defined since $\mathcal{G}|_{X \setminus Y} = 0$. Moreover, let $x \in Y \subseteq X$. Choose an affine set $U \subseteq X$ so that $U = \operatorname{Spec} R$ and $\mathcal{I}(U) = I \triangleleft R$. Then $(Y \cap U, \mathcal{O}_{Y \cap U}) = \operatorname{Spec}(R/I)$ so that Y is a scheme. Hence by construction we have an exact sequence

 $0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y \longrightarrow 0$

which implies that $f: Y \hookrightarrow X$ is a closed immersion and so Y is a closed subscheme.

2.6Sheaves Associated to Graded Modules

Definition 2.6.1. Let $S = \bigoplus_{d>0} S_d$ be a graded ring and M an S-module. We say that M is graded if there exist a family of S-submodules of $M \{ M_d \}_{d \in \mathbb{Z}}$ such that

$$M = \bigoplus_{d \in \mathbb{Z}} M_d$$

and $S_d \cdot M_e \subseteq M_{d+e}$.

Definition 2.6.2. Let $X = \operatorname{Proj}(S)$ be a projective scheme and M a graded S-module. We define the \mathcal{O}_X -module M by

$$\widetilde{M}(U) = \begin{cases} s: U \to \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \\ s: U \to \bigcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \end{cases} \begin{vmatrix} \forall \mathfrak{p} \in U, s(\mathfrak{p}) \in M_{\mathfrak{p}} \\ \exists \text{ open } \mathfrak{p} \in W \subseteq U \text{ such that } \forall \mathfrak{q} \in W, \\ s(\mathfrak{q}) = \frac{m}{a} \in M_{\mathfrak{q}} \text{ where } m \in M, a \in R \\ \text{ are homogeneous of the same degree } \end{cases}$$

Remark. Let $X = \operatorname{Proj}(S)$ be a projective scheme. Then $\mathcal{O}_X \cong \widetilde{S}$.

Theorem 2.6.3. Let $X = \operatorname{Proj}(S)$ be a projective scheme. Then

- 1. $(\overline{M})_{\mathfrak{p}} \cong M_{(\mathfrak{p})}$ for all $\mathfrak{p} \in X$.
- 2. $\widetilde{M}|_{D_+(b)} \cong \widetilde{M_{(b)}}$ considered as a sheaf on $\operatorname{Spec}(S_{(b)})$ for all homogeneous $b \in S_+$.
- 3. \widetilde{M} is quasi-coherent.

Proof. The proof for Part 1 and Part 2 are the same as for the case of M = S. Part 3 is an immediate consequence of Part 2 since the open sets $D_+(b)$ are a basis for X.

Definition 2.6.4. Let $S = \bigoplus_{d>0} S_d$ be a graded ring and $M = \bigoplus_{d \in \mathbb{Z}} M_d$ a graded Smodule. Given $n \in \mathbb{Z}$, let M(n) be the graded S-module whose deg d piece is M_{d+n} . Moreover, if $X = \operatorname{Proj}(S)$ is a projective scheme and \mathcal{F} an \mathcal{O}_X -module, we define

$$\mathcal{O}_X(n) = \overline{S(n)}$$
$$\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$

Definition 2.6.5. Let (X, \mathcal{O}_X) be a ringed space. An \mathcal{O}_X module \mathcal{L} is said to be invertible if for all $x \in X$ there exists an open set $x \in U$ such that $\mathcal{L}|_U \cong \mathcal{O}_U$.

Theorem 2.6.6. $S = \bigoplus_{d>0} S_d$ be a graded ring which is generated over S_0 (as an S_0 -algebra) by elements in S_1 and $M = \bigoplus_{d \in \mathbb{Z}} M_d$, $N = \bigoplus_{d \in \mathbb{Z}} N_d$ a graded S-modules. Then

1. $\mathcal{O}_X(n)$ is invertible for all $n \in \mathbb{Z}$.

2.
$$\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} = \widetilde{M \otimes_S N}.$$

3. $\widetilde{M}(n) \cong \widetilde{M(n)}.$
4. $\mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) \cong \mathcal{O}_X(m+n) \text{ for all } m, n \in \mathbb{Z}.$

Proof.

<u>Part 1:</u> Since S is generated over S_0 by S_1 , sets of the form $D_+(b)$ with $b \in S_1$ cover X. Hence, given $b \in S_1$, it suffices to show that $\mathcal{O}_{D_+(b)}(n)$ is invertible for all $n \in \mathbb{Z}$.

To this end, fix $b \in S_1$ and $n \in \mathbb{Z}$. We have

$$\mathcal{O}_X|_{D_+(b)} = \widetilde{S(n)}|_{D_+(b)} \cong \widetilde{S(n)_{(b)}}$$

Now, we have an isomorphism

$$S(n)_{(b)} \to S_{(b)}$$
$$\frac{a}{b^r} \mapsto \frac{a}{b^{r+n}}$$

So that

$$\mathcal{O}_X(n)|_{D_+(b)} \cong \widetilde{S_{(b)}} \cong \mathcal{O}_{D_+(b)}$$

<u>Part 2:</u> We construct an isomorphism of \mathcal{O}_X -modules

$$\varphi: \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \to \widetilde{M \otimes_S N}$$

Since S is generated over S_0 as an S_0 -algebra by elements of S_1 , it suffices to define φ on open sets $D_+(b)$ for $b \in S_1$. Observe that we have

$$(\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N})(D_+(b)) \cong (\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N})|_{D_+(b)}(D_+(b))$$
$$= (\widetilde{M_{(b)}} \otimes_{D_+(b)} \widetilde{N(b)})(D_+(b))$$
$$\cong M_{(b)} \otimes_{S_{(b)}} N_{(b)}$$

Moreover, we have

$$\widetilde{M} \bigotimes_{S} \widetilde{N}(D_{+}(b)) \cong (M \otimes_{S} N)_{(b)}$$

Now note that we have a canonical isomorphism

$$M_{(b)} \otimes_{S_{(b)}} N_{(b)} \to (M \otimes_S N)_{(b)}$$
$$\frac{m}{b^n} \otimes \frac{n}{b^{n'}} \mapsto \frac{m \otimes n}{b^{n+n'}}$$

since the tensor product commutes with localisation. We can thus define $\varphi_{D_+(b)}$ to be this isomorphism and we are done.

<u>Part 3:</u> By Part 2 we have

$$\widetilde{M}(n) = \widetilde{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$
$$= \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{S(n)}$$
$$\cong \widetilde{M \otimes_S S(n)}$$

Now note that we have an isomorphism

$$M \otimes_S S(n) \to M(n)$$
$$m \otimes a \mapsto am$$

so that

$$\widetilde{M}(n) \cong \widetilde{M \otimes_S S(n)} \cong \widetilde{M(n)}$$

<u>Part 4:</u> By Part 2 we have

$$\mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) = \widetilde{S(m)} \otimes_{\mathcal{O}_X} \widetilde{S(n)} \cong \widetilde{S(m)} \otimes_S \widetilde{S(n)}$$

Now note that we have an isomorphism

$$S(m) \otimes S(n) \to S(m+n)$$
$$a \otimes b \mapsto ab$$

so that

$$\mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) \cong \widetilde{S(m)} \otimes_S \widetilde{S(n)} \cong \widetilde{S(m+n)}$$

Lemma 2.6.7. Let $X = \operatorname{Proj}(T)$ and $Y = \operatorname{Proj}(S)$ be projective schemes and $\alpha : S \to T$ a homomorphism of graded rings. Then α induces a morphism of schemes $f : U \to Y$ where

$$U = \{ \mathfrak{p} \in \operatorname{Proj}(T) \mid \alpha^{-1}(\mathfrak{p}) \in \operatorname{Proj}(S) \}$$

Moreover, if α is surjective then this morphism in fact a closed immersion $f: X \to Y$.

Proof. Let $S = \bigoplus_{d \ge 0} S_d$ and $T = \bigoplus_{d \ge 0} T_d$ and define

$$f: U \to Y$$
$$\mathfrak{q} \mapsto \alpha^{-1}(\mathfrak{q})$$

which is well-defined since α preserves degrees. To show that this map is continuous, it suffices to show that $f^{-1}(D_+(b))$ is open for all homogeneous $b \in S$. But

$$f^{-1}(D_+(b)) = (\alpha^{-1})^{-1}(D_+(b)) = U \cap D_+(\alpha(b))$$

which is clearly open. We must now define a morphism of sheaves $\varphi : \mathcal{O}_Y \to f_*\mathcal{O}_U$. To this end, we must provide a homomorphism of rings $\varphi_V : \mathcal{O}_Y(V) \to (f_*\mathcal{O}_U)(V) = \mathcal{O}_U(f^{-1}V)$ for each open set $V \subseteq Y$. Once again, it suffices to provide a homomorphism of rings

$$\varphi_{D_+(b)}: \mathcal{O}_Y(D_+(b)) \to \mathcal{O}_U(f^{-1}(D_+(b))) = \mathcal{O}_U(U \cap D_+(\alpha(b))) = \mathcal{O}_X(U \cap D_+(\alpha(b)))$$

for each homogeneous $b \in S$. Observe that we have a natural homomorphism of rings

$$\mathcal{O}_Y(D_+(b)) = S_{(b)} \to T_{(\alpha(b))} = \mathcal{O}_X(D_+(\alpha(b)))$$

induced by α . Composing this homomorphism with the restriction to U provides us with the desired homomorphism. To show that it is indeed a morphism of sheaves, we need to show that the diagram

$$\mathcal{O}_Y(V) \longrightarrow \mathcal{O}_Y(W)$$

$$\downarrow^{\varphi_V} \qquad \qquad \qquad \downarrow^{\varphi_V}$$

$$(f_*\mathcal{O}_U)(V) \longrightarrow (f_*\mathcal{O}_U)(W)$$

commutes. But this is clear by construction. If α is surjective then U = X and we get a morphism of schemes $f: X \to Y$. Letting $I = \ker \alpha$ we then have an exact sequence

$$0 \longrightarrow I \longrightarrow S \longrightarrow T \cong {}^{S}_{I} \longrightarrow 0$$

which yields an exact sequence of sheaves

$$0 \longrightarrow \widetilde{I} \longrightarrow \widetilde{S} \longrightarrow \widetilde{T} \longrightarrow 0$$

with \widetilde{I} an ideal sheaf of $\mathcal{O}_Y = \widetilde{S}$. We thus have a closed immersion $f: X \to Y$ and so X is a closed subscheme of Y.

Theorem 2.6.8. Let $S = \bigoplus_{d\geq 0} S_d$ and $T = \bigoplus_{d\geq 0} T_d$ such that S is generated as an S_0 algebra by S_1 . Let $X = \operatorname{Proj}(S)$ and $Y = \operatorname{Proj}(T)$ be the corresponding projective schemes and suppose we are given a surjective ring homomorphism $\alpha : S \to T$ with $f : Y \to X$ the corresponding morphism of schemes.

- 1. If L is a graded S-module then $f^*\widetilde{L} \cong \widetilde{L \otimes_S T}$.
- 2. If K is a graded T-module then $f_*\widetilde{K} \cong \widetilde{_SK}$ where $_SK$ is K considered as a graded S-module via α .

In particular, we have $f^*\mathcal{O}_X(n) \cong \mathcal{O}_Y(n)$ and $f_*\mathcal{O}_Y(n) \cong (f_*\mathcal{O}_Y)(n) \cong (f_*\mathcal{O}_Y) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$.

Proof. We shall construct a morphism of \mathcal{O}_X -modules $\psi : f^*\widetilde{L} \to \widetilde{L \otimes_S T}$. It suffices to construct an isomorphism on open sets of the form $D_+(c) \subseteq Y$ where $c \in T_1$. Let $b \in S_1$ be such that $\alpha(b) = c$. Expanding definitions, we see that

$$f^*(\widetilde{L}(D_+(c))) = f^*(\widetilde{L}|_{D_+(b)})(D_+(c))$$

=
$$f^*(\widetilde{L_{(b)}})(D_+(c))$$

=
$$\widetilde{L_{(b)} \otimes_{S_{(b)}} T_{(c)}}(D_+(c)))$$

\approx
$$L_{(b)} \otimes_{S_{(b)}} T_{(c)}$$

On the other hand, we have

$$\widetilde{L} \otimes_S T(D_+(c)) = (L \otimes_S T)_{(c)}$$

Now, we have an isomorphism

$$L_{(b)} \otimes_{S_{(b)}} T_{(c)} \to (L \otimes_S T)_{(c)}$$
$$\frac{l}{b^r} \otimes \frac{t}{c^{r'}} \mapsto \frac{l \otimes t}{c^{r+r'}}$$

so we have an isomorphism $\psi_{D_+(c)} : (f^*\widetilde{L})(D_+(c)) \to \widetilde{L \otimes_S T}(D_+(c))$ which induces an isomorphism ψ_V for all open sets $V \subseteq Y$ and so an isomorphism of \mathcal{O}_X -modules ψ . A similar argument proves that $f_*\widetilde{K} \cong \widetilde{SK}$. Finally,

$$f^*\mathcal{O}_X(n) \cong \widetilde{f^*S(n)} \cong \widetilde{S(n) \otimes_S T} = \widetilde{T(n)} = \mathcal{O}_Y(n)$$

via the isomorphism

$$S(n) \otimes_S T \to T(n)$$
$$a \otimes t \mapsto at$$

and

$$f_*\mathcal{O}_Y(n) \cong f_*T(n) \cong ST(n) \cong ST \otimes S(n) \cong f_*\mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$

via the isomorphism

$${}_{S}T \otimes_{S} S(n) \to {}_{S}T(n)$$
$$t \otimes a \mapsto at$$

3 Divisors and Differentials

3.1 Invertible Sheaves and Cartier Divisors

Definition 3.1.1. Let (X, \mathcal{O}_X) be a ringed space. We say that an \mathcal{O}_X -module \mathcal{F} is **locally** free of rank n if for all $x \in X$ there exists an open $x \in U \subseteq X$ such that

$$\mathcal{F}|_U \cong igoplus_{i=1}^n \mathcal{O}_U$$

Note that if n = 1 then this is just the definition of an invertible \mathcal{O}_X -module.

Definition 3.1.2. Let (X, \mathcal{O}_X) be a ringed space and $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -modules. We define an \mathcal{O}_X -module $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ whose sections are given by

 $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})(U) = \{ \varphi : \mathcal{F} \mid U \to \mathcal{G} \mid U \mid \varphi \text{ is a morphism of } \mathcal{O}_X \text{-modules} \}$

Proposition 3.1.3. Let (X, \mathcal{O}_X) be a ringed space and $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -modules. Then $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is indeed an \mathcal{O}_X -module.

Proof. We must first show that $\mathcal{H} = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is a sheaf of abelian groups. Indeed, fix an open set $U \subseteq X$. We define an abelian group structure on $\mathcal{H}(U)$ as follows. Given two morphisms $\varphi : \mathcal{F}|_U \to \mathcal{G}|_U$ and $\psi : \mathcal{F}|_U \to \mathcal{G}|_U$ we define

$$(\varphi + \psi)|_V = \varphi|_V + \psi|_V$$

for all open sets $V \subseteq U$. This is a well-defined morphism $(\varphi + \psi) : \mathcal{F} \to \mathcal{G}$ since φ and ψ are morphisms of sheaves. The identity morphism $e : \mathcal{F}|_U \to \mathcal{G}|_U$ is given by the trivial morphism $e_V : \mathcal{F}|_U(V) \to \mathcal{G}|_U(V)$. Given a morphism $\varphi : \mathcal{F}|_U \to \mathcal{G}|_U$, its inverse $\varphi^{-1} : \mathcal{F}|_U \to \mathcal{G}|_U$ is given pointwise by

$$\varphi_V^{-1}: \mathcal{F}|_U(V) \to \mathcal{G}|_U(V)$$
$$s \mapsto \varphi_V(s)^{-1}$$

Hence $\mathcal{H}(U)$ is indeed an abelian group for all open sets $U \subseteq V$. Now, given open sets $U \subseteq V \subseteq$, we define the restriction morphisms $|_V$ by sending a section $\varphi : \mathcal{F}|_U \to \mathcal{F}|_U$ to $\varphi|_V \in \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}|_V, \mathcal{G}|)V)$. \mathcal{H} is thus a presheaf of abelian groups.

We next verify that \mathcal{H} is a sheaf. To this end, fix an open subset $U \subseteq X$ and an open covering $U = \bigcup_i U_i$. Let $\varphi_i \in \mathcal{H}(U_i)$ be sections such that $\varphi_i|_{U_i \cap U_j} = \varphi_j|_{U_i \cap U_j}$. We need to show that there exists a unique $\varphi \in \mathcal{H}(U)$ such that $\varphi|_{U_i} = \varphi_i$. Observe that, given an open subset $V \subseteq U$, $A_i = V \cap U_i$ cover V. Now fix a section $s \in \mathcal{F}|_U(V)$ and denote $s_i = s|_{A_i}$. For each i we have a morphism

$$\varphi_i|_{A_i}: \mathcal{F}|_U(A_i) \to \mathcal{G}|_U(A_i)$$
$$s_i \mapsto t_i$$

By the compatibility of φ on overlaps, the t_i are also compatible on overlaps. Since $\mathcal{G}|_U$ is a sheaf, there exists a unique $t \in \mathcal{G}|_U(V)$ such that $t|_{A_i} = t_i$ for each *i*. We can then define

$$\varphi_V : \mathcal{F}|_U(V) \to \mathcal{G}|_U(V)$$
$$s \mapsto t$$

Now, by construction, $\varphi|_{U_i} = \varphi_i$ and so φ is the desired section $\varphi \in \mathcal{H}(U)$. Hence \mathcal{H} is a sheaf of abelian groups.

It remains to show that \mathcal{H} is an \mathcal{O}_X -module. To this end we must show that, for all open subsets $U \subseteq X$, $\mathcal{H}(U)$ is an $\mathcal{O}_X(U)$ -module. As we have shown, it is an abelian group so we just need to endow it with a $\mathcal{O}_X(U)$ -module strucutre. Fix a section $\varphi : \mathcal{F}|_U \to \mathcal{G}|_U$ and an element $r \in \mathcal{O}_X(U)$. Define $r \cdot \varphi$ to be the morphism that is given pointwise by

$$(r \cdot \varphi)_V : \mathcal{F}|_U(V) \to \mathcal{G}|_U(V)$$

 $s \mapsto r|_V \cdot \varphi(s)$

To verify that this indeed gives us an $\mathcal{O}_X(U)$ -module structure, fix $\phi, \psi \in \mathcal{H}(U)$ and a section $s \in F|_U(V)$. Then

$$(r \cdot (\varphi + \psi))|_V(s) = r|_V \cdot (\varphi + \psi)(s) = r|_V \cdot (\varphi(s) + \psi(s)) = r|_V \cdot \varphi(s) + r|_V \psi(s)$$
$$= (r \cdot \varphi)|_V + (r \cdot \psi)|_V$$

The other module axioms follow similarly.

Lemma 3.1.4. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{L} an invertible \mathcal{O}_X -module. Then $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$ is also an invertible \mathcal{O}_X -module.

Proof. Fix $x \in X$. We need to exhibit an open neighbourhood $x \in W \subseteq X$ such that $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)|_W \cong \mathcal{O}_W$. Since \mathcal{L} is invertible, there exists an open neighbourhood $x \in W \subseteq X$ such that $\mathcal{L}|_W \cong \mathcal{O}_W$. Then

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)|_W = \operatorname{Hom}_{\mathcal{O}_W}(\mathcal{L}|_W, \mathcal{O}_W) \cong \operatorname{Hom}_{\mathcal{O}_W}(\mathcal{O}_W, \mathcal{O}_W) - \mathcal{O}_W$$

so W is a suitable choice of neighbourhood.

Theorem 3.1.5. Let (X, \mathcal{O}_X) be a ringed space. Then the set of invertible sheaves (up to isomorphism) on X is an abelian group called the **Picard group** of X and denoted Pic(X).

Proof. We define the group operation on $\operatorname{Pic}(X)$ to be the tensor product of \mathcal{O}_X -modules which is clearly a commutative binary operation. We first check that, given $\mathcal{L}, \mathcal{M} \in \operatorname{Pic}(X)$ we have $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M} \in \operatorname{Pic}(X)$. Indeed for all $x \in X$ there exists an open neighbourhood $x \in U \subseteq X$ such that $\mathcal{L}|_U = \mathcal{O}_U$ and an open neighbourhood $x \in V \subseteq X$ such that $\mathcal{M}|_V = \mathcal{O}_V$. Let $W = U \cap V$. Then

$$(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M})|_W \cong \mathcal{O}_W \otimes_{\mathcal{O}_W} \mathcal{O}_W \cong \mathcal{O}_W$$

The identity element is clearly \mathcal{O}_X since

$$\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong \mathcal{L}$$

Given $\mathcal{L} \in \operatorname{Pic}(X)$, we claim that the inverse of \mathcal{L} is given by $\mathcal{L}^{-1} = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$. To this end, we shall construct an isomorphism of \mathcal{O}_X -modules $\varphi : \mathcal{L}^{-1} \otimes_{\mathcal{O}_X} \mathcal{L} \to \mathcal{O}_X$. We define φ pointwise by

$$\varphi_U : \mathcal{L}^{-1}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{L}(U) \to \mathcal{O}_X(U) \psi \otimes t \mapsto \psi_U(t)$$

Since for every $x \in X$ we can find an open neighbourhood $x \in W \subseteq X$ such that $\mathcal{L}|_W \cong \mathcal{O}_W \mathcal{L}^{-1}|_W$, we get an induced isomorphism of stalks so ϕ must be an isomorphism.

Finally, the associativity of the binary operation is immediate from the associativity of tensor products of modules. $\hfill \Box$

Definition 3.1.6. Let X be an integral scheme, η its unique generic point and $K = \mathcal{O}_{\eta}$ its function field so that we have an injective ring homomorphism $\mathcal{O}_X(U) \hookrightarrow K$ for all open $U \subseteq X$. We define a **Cartier divisor** to be a system of the form $\{(U_i, f_i)\}_{i \in I}$ where the U_i give an open covering of X and $f_i \in K$ is such that f_i/f_j and f_j/f_i are both in $\mathcal{O}_X(U_i \cap U_j)$.

We define an equivalence relation \sim on the set of all Cartier divisors by declaring that $(U_i, f_i) \sim (U_\alpha, g_\alpha)$ if and only if for all i, α we have that f_i/g_α is invertible in $\mathcal{O}_X(U_i \cap V_\alpha)$.

A Cartier divisor D is said to be **principal** if it is represented by a single pair (X, f) for some $f \in K$. In this case, we write $D \sim 0$. Given two Cartier divisors E and F represented by (U_i, f_i) and (V_α, g_α) respectively, we define E + F to be the divisor given by the system $U_i \cap V_\alpha, f_i g_\alpha)$ and -E the divisor given by the system $(U_i, 1/f_i)$. If $E - F \sim 0$ then we write $E \sim F$.

We define the **Cartier divisor class group**, denoted Div(X), to be the free abelian group on the set of Cartier divisors modulo the equivalence relation \sim .

Definition 3.1.7. Let X be an integral scheme and K its function field. Given a Cartier divisor $D = (V_i, f_i)$, we define an \mathcal{O}_X -module

$$\mathcal{O}_X(D)(U) = \{ h \in K \mid hf_i \in \mathcal{O}_X(U \cap V_i) \}$$

Lemma 3.1.8. Let X be an integral scheme and K its functon field. Let D be a Cartier divisor for X. Then $\mathcal{O}_X(D)$ is indeed an \mathcal{O}_X -module.

Proof. We must first show that this definition is independent of the choice of representative of D. Indeed, let $D = (V_i, f_i)$ and $D' = (W_\alpha, g_\alpha)$ be two representatives of D (slightly abusing notation). We want to show that $\mathcal{O}_X(D) = \mathcal{O}_X(D')$. Fix an open set $U \subseteq X$ and $h \in \mathcal{O}_X(D)(U)$. By definition, h is an element of K such that $hf_i \in \mathcal{O}_X(U \cap V_i)$ for all i. Since D and D' define the same divisor, we have that f_i/g_α is invertible in $\mathcal{O}_X(U_i \cap V_\alpha)$ for all i, α . Then

$$hf_i \in \mathcal{O}_X(U \cap V_i) \implies hf_i \cdot \frac{g_\alpha}{f_i} \in \mathcal{O}_X(U \cap V_i \cap W_\alpha) \text{ for all } i, \alpha$$
$$\implies hg_\alpha \in \mathcal{O}_X(U \cap W_\alpha) \text{ for all } \alpha$$
$$\implies h \in \mathcal{O}_X(D')(U)$$

Hence $\mathcal{O}_X(D) \subseteq \mathcal{O}_X(D')$. By symmetry it then follows that $\mathcal{O}_X(D) = \mathcal{O}_X(D')$.

It is clear that $\mathcal{O}_X(D)(U)$ is an abelian group under addition and that it inherits the restriction morphisms from \mathcal{O}_X and is thus a presheaf. To see that it is a sheaf, let $U = \bigcup_i U_i$ be an open cover and $h_i \in \mathcal{O}_X(D)(U_i)$ such that $h_i|_{U_i \cap U_j} = h_j|_{U_i \cap U_j}$. We need to show that there exists a unique $h \in \mathcal{O}_X(D)(U)$ such that $h|_{U_i} = h_i$. Fixing m, observe that $\{U_i \cap V_m\}_{i \in I}$ is an open cover of $U \cap V_m$. Then $h_i f_m$ are compatible on overlaps since the h_i are. Since \mathcal{O}_X is a sheaf, there exists a unique $h' \in U \cap V_m$ such that $h'|_{U_i} = h_i f_m$. Defining $h = h' f_m^{-1} \in K$ shows that $h f_m \in \mathcal{O}_X(U \cap V_m)$. Indeed, if this were not the case then we would have that $(h f_m)|_{U_i} = h_i f_m \notin \mathcal{O}_X(U_i \cap V_m)$ which is a contradiction. Now by the definition of a Cartier divisor, we have

$$hf_m \in \mathcal{O}_X(U \cap V_m) \implies hf_m \cdot \frac{f_{m'}}{f_m} \in \mathcal{O}_X(U \cap V_m \cap V_{m'})$$
$$\implies hf_{m'} \in \mathcal{O}_X(U \cap V_{m'})$$

so that $h \in \mathcal{O}_X(D)(U)$. Finally, $\mathcal{O}_X(D)$ clearly inherits an \mathcal{O}_X -module structure as a subset of $K = \mathcal{O}_X(U)$.

Theorem 3.1.9. Let X be an integral scheme and K its function field. If D and E are Cartier divisors on X then

- 1. $\mathcal{O}_X(D)$ is invertible.
- 2. $\mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E) \cong \mathcal{O}_X(D+E).$
- 3. $\mathcal{O}_X(-D) \cong \mathcal{O}_X(D)^{-1}$.
- 4. $D \sim E$ if and only if $\mathcal{O}_X(D) \cong \mathcal{O}_X(E)$.

Proof.

<u>Part 1:</u> Suppose that D is represented by (U_i, f_i) . We have isomorphisms

$$\mathcal{O}_X(D)|_{U_i} \cong \mathcal{O}_{U_i} \cdot \frac{1}{f_i} \cong \mathcal{O}_{U_i}$$

<u>Part 2:</u> Define an isomorphism

$$\psi_U : \mathcal{O}_X(D)(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(E)(U) \to \mathcal{O}_X(D+E)(U)$$
$$h \otimes h' \mapsto hh'$$

on open sets $U \subseteq X$. To see that this is well-defined, suppose that (U_i, f_i) represents Dand (V_{α}, g_{α}) represents E. Since $h \in \mathcal{O}_X(D)$ we have $hf_i \in \mathcal{O}_X(U \cap U_i)$ for all i. Similarly, $h' \in \mathcal{O}_X(E)$ so that $h'g_{\alpha} \in \mathcal{O}_X(U \cap V_{\alpha})$ for all α . Then $hh'f_ig_{\alpha} \in \mathcal{O}_X(U \cap U_i \cap V_{\alpha})$ for all iand α . Hence $hh' \in \mathcal{O}_X(D + E)(U)$.

Now, all \mathcal{O}_X -modules are invertible so we can find a common open set U such that

$$\mathcal{O}_X(D)|_U \cong \mathcal{O}_X(E)|_U \cong \mathcal{O}_X(D_E)|_U \cong \mathcal{O}_X|_U$$

Hence we have an induced isomorphism of stalks for every $x \in X$ whence they must be isomorphic.

<u>Part 3:</u> By the previous Part, we have

$$\mathcal{O}_X(-D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(D) \cong \mathcal{O}_X(-D+D) \cong \mathcal{O}_X(0) \cong \mathcal{O}_X$$

But inverses are unique in $\operatorname{Pic}(X)$ so we must have that $\mathcal{O}_X(-D) \cong \mathcal{O}_X(D)^{-1}$.

<u>Part 4:</u> It suffices to show that $D \sim 0$ if and only if $\mathcal{O}_X(D) \cong \mathcal{O}_X$. To this end, first suppose that $D \sim 0$ so that D is represented by (X, f). Then $\mathcal{O}_X(D) \cong \mathcal{O}_X \cdot \frac{1}{f} \cong \mathcal{O}_X$.

Conversely, suppose that we have an isomorphism $\varphi : \mathcal{O}_X \to \dot{\mathcal{O}}_X(D)$ and that D is represented by (U_i, f_i) . Let $f \in \mathcal{O}_X(D)(X)$ be the image of $1 \in \mathcal{O}_X(X)$ under φ_X . Then $\mathcal{O}_X(D)|_U = \mathcal{O}_U \cdot \frac{1}{f}$.

On the other hand, $\mathcal{O}_X(D)|_{U_i} = \mathcal{O}_{U_i} \cdot \frac{1}{f_i}$. Hence f/f_i is invertible in $\mathcal{O}_X(U_i)$ for all i so that D is represented by (X, f) whence $D \sim 0$.

Remark. This Theorem provides an injection $Div(X) \to Pic(X)$.

3.2 Differential Forms

Definition 3.2.1. Let R be a ring and S an R-algebra. For all $s \in S$ let ds be a symbol and X the free S-module generated by the ds. Let L be the S-submodule generated by the relations

- 1. $dr, r \in R$
- 2. $d(s+t) ds dt, s, t \in S$
- 3. $d(st) tds sdt, s, t \in S$

We define the module of relative differential forms of S over R to be $\Omega_{S/R} = X/L$.

Remark. Let M be an S-module and $\alpha: S \to M$ a homomorphism such that

- $\alpha(r) = 0$ for all $r \in R$
- $\alpha(s+t) = \alpha(s) + \alpha(t)$
- $\alpha(st) = t\alpha(s) + s\alpha(t)$

Then α necessarily factors uniquely through $\Omega_{S/R}$.

Example 3.2.2. Let $S = R[t_1, \ldots, t_n]$ for some commutative ring R. Then dt_1, \ldots, dt_n generate $\Omega_{S/R}$ where $d(t_1t_2) = t_2dt_1 + t_1dt_2$. In fact, dt_1, \ldots, dt_n generate $\Omega_{S/R}$ freely. Indeed, define a homomorphism

$$\alpha: S \to M = \bigoplus_{i=1}^{n} S \cdot dt_{i}$$
$$f \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial t_{i}} dt_{i}$$

then $\alpha(t_i) = dt_i$. The universal property of $\Omega_{S/R}$ then implies that α factors uniquely through $\Omega_{S/R}$, say via $\beta : \Omega_{S/R} \to M$. β is necessarily surjective and M is free so it is infact an isomorphism.

Definition 3.2.3. Let $f: X \to Y$ be a morphism of affine schemes where $X = \operatorname{Spec}(S)$ and $Y = \operatorname{Spec}(R)$. Let $\alpha: R \to S$ be the homomorphism of rings that induces f and consider S as an R-algebra via α . We define the **sheaf of relative differential forms** of Y over X to be $\widetilde{\Omega_{S/R}}$.

If X and Y are arbitrary schemes then we may take an affine open cover $Y = \bigcup_i V_i$ and cover $f^{-1}V_i$ with affine schemes as $f^{-1}V_i = \bigcup_j U_{i,j}$. We then define Ω_{U_{ij}/V_i} as above and glue them together to define a global sheaf $\Omega_{X/Y}$.

Example 3.2.4. Let R be a ring, $S = R[t_1, \ldots, t_n]$, $X = \mathbb{A}_R^n = \operatorname{Spec}(S)$ and $Y = \operatorname{Spec}(R)$. Let $f: X \to Y$ be the morphism of schemes induced by the ring homomorphism

$$\alpha: R \to R[t_1, \dots, t_n]$$
$$r \mapsto r$$

and consider S as an R-module via α . Then $\Omega_{X/Y} = \widetilde{\Omega_{S/R}} = \bigoplus_{i=1}^{n} S = \bigoplus_{i=1}^{n} \mathcal{O}_X$

Example 3.2.5. Let R be a ring, $S = R[t_0, \ldots, t_n]$, $X = \mathbb{P}_R^n = \operatorname{Proj}(S)$ and $Y = \operatorname{Spec}(R)$. Let $f: X \to Y$ be the morphism of schemes induced by the ring homomorphism

$$\alpha: R \to R[t_0, \dots, t_n]$$
$$r \mapsto r$$

and consider S as an R-module via α . We can cover X by open affine sets of the form $D_+(t_0), \ldots, D_+(t_n)$ where $D_+(t_i) \cong \mathbb{A}^n_R$. We can glue all the sheaves $\Omega_{D_+(t_i)/Y}$ together to get a sheaf $\Omega_{X/Y}$ such that $\Omega_{X/Y} \cong \bigoplus_{i=1}^n \mathcal{O}_{D_+}(t_i)$.

Theorem 3.2.6. Let R be a ring, $X = \mathbb{P}_R^n$ and $Y = \operatorname{Spec}(R)$. Then we have an exact sequence

$$0 \longrightarrow \Omega_{X/Y} \longrightarrow \bigoplus_{i=1}^{n+1} \mathcal{O}_X(-1) \longrightarrow \mathcal{O}_X \longrightarrow 0$$

Proof. Proof omitted (see handwritten Part III notes).

Example 3.2.7. With assumptions as before, we have that $\Omega(X/Y) = 0$. Indeed, the Theorem gives us an injection

$$\Omega_{X/Y}(X) \hookrightarrow \bigoplus_{i=1}^{n+1} \mathcal{O}_X(-1)(X)$$

But by a question on an example sheet, we know the latter sheaf has no non-trivial global sections.

Example 3.2.8. Let $f : X \to Y$ be a closed immersion. Then $\Omega_{X/Y} = 0$. Indeed, we may assume that X and Y are affine schemes so that $X = \operatorname{Spec}(S), Y = \operatorname{Spec}(R)$ and let f correspond to some ring homomorphism $\alpha : R \to S$ so that $S \cong R/\ker \alpha$. Since α is surjective, it follows that $\Omega_{S/R} = 0$.

4 Cohomology

4.1 Results from Category Theory

Definition 4.1.1. By an **abelian category** we shall mean one of the following

- 1. AbGrp Category of abelian groups and homomorphisms of groups.
- 2. $\mathbf{Mod}_{\mathbf{R}}$ Category of modules over a commutative ring R and R-module homomorphisms.
- 3. $\mathbf{Sh}(X)$ Category of sheaves of rings over a topological space X and morphisms of sheaves.
- 4. $\mathfrak{Mod}(X)$ Category of \mathcal{O}_X -modules over a ringed space (X, \mathcal{O}_X) and morphisms of \mathcal{O}_X -modules.
- 5. $\mathfrak{Qco}(X)$ Category of quasi-coherent sheaves on a scheme X and morphisms of quasi-coherent sheaves.

Definition 4.1.2. Let \mathcal{A} be an abelian category. By a **complex** we mean a sequence

$$\dots \longrightarrow A^{-1} \xrightarrow{d^{-1}} A^0 \xrightarrow{d^0} A^1 \xrightarrow{d^1} A^2 \longrightarrow \dots$$

of objects and morphisms in \mathcal{A} such that im $d^{i-1} \subseteq \ker d^i$. We denote such a sequence by A^{\bullet} .

We define the i^{th} -cohomology object of A^{\bullet} to be

$$h^i(A^{\bullet}) = \frac{\ker d^i}{\operatorname{im} d^{i-1}}$$

We say that A^{\bullet} is **exact** if $h^i(A^{\bullet}) = 0$ for all *i*.

Definition 4.1.3. Let \mathcal{A} be an abelian category and A^{\bullet} and B^{\bullet} complexes in \mathcal{A} . We define a **morphism** of complexes to be morphisms $f_i : A^i \to B^i$ for each *i* such that the diagrams

$$\begin{array}{ccc} A^{i} & \stackrel{a^{i}}{\longrightarrow} & A^{i+1} \\ \downarrow^{f_{i}} & & \downarrow^{f_{i}} \\ B^{i} & \stackrel{b^{i}}{\longrightarrow} & B^{i+1} \end{array}$$

commute for all i. Given a sequence

 $0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0$

of complexes and morphisms between them, we say that such a sequence is **exact** if the sequence

 $0 \longrightarrow A^i \longrightarrow B^i \longrightarrow C^i \longrightarrow 0$

is exact for every i.

Proposition 4.1.4. Let \mathcal{A} be an abelian category and

 $0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0$

an exact sequence of complexes. Then we have a long exact sequence of cohomology groups

$$0 \longrightarrow h^{0}(A^{\bullet}) \longrightarrow h^{0}(B^{\bullet}) \longrightarrow h^{0}(C^{\bullet}) \longrightarrow$$

$$\widehat{\phantom{h^{1}(A^{\bullet})}} \longrightarrow h^{1}(B^{\bullet}) \longrightarrow h^{1}(C^{\bullet}) \longrightarrow$$

$$\widehat{\phantom{h^{2}(A^{\bullet})}} \longrightarrow h^{2}(B^{\bullet}) \longrightarrow h^{2}(C^{\bullet}) \longrightarrow$$

$$h^{n}(A^{\bullet}) \longrightarrow h^{n}(B^{\bullet}) \longrightarrow h^{n}(C^{\bullet})$$

Definition 4.1.5. Let \mathcal{A} and \mathcal{B} be abelian categories. We say that a functor $F : \mathcal{A} \to \mathcal{B}$ is additive if for all $A, A' \in ob \mathcal{A}$ the map $\operatorname{Hom}(A, A') \to \operatorname{Hom}(FA, FA')$ is a homomorphism of abelian groups.

We say that F is **left-exact** if it is additive and for each exact sequence

 $0 \longrightarrow A \longrightarrow A' \longrightarrow A'' \longrightarrow 0$

we have an exact sequence

$$0 \longrightarrow FA \longrightarrow FA' \longrightarrow FA''$$

Similarly, we have right-exact functors. We say that a functor is **exact** if it is both left and right exact.

Example 4.1.6. We have a left-exact functor

$$F: \mathbf{Sh}(X) \to \mathbf{AbGrp}$$
$$\mathcal{F} \mapsto \mathcal{F}(X)$$

Definition 4.1.7. Let \mathcal{A} be an abelian category. We say that an object $I \in ob \mathcal{A}$ is **injective** if for every diagram

with first row exact there exists a morphism $A' \to I$ extending the diagram to a commutative diagram.

Example 4.1.8. \mathbb{Q} is injective in **Grp**.

Definition 4.1.9. Let \mathcal{A} be an abelian category and $A \in \text{ob }\mathcal{A}$ an object. We define a **injective resolution** of A to be a sequence

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \dots$$

where each I^i is injective. We say that \mathcal{A} has enough injectives if every object admits an injective resolution.

Example 4.1.10. Let R be a commutative ring. Then $Mod_{\mathbf{R}}$ has enough injectives.

Definition 4.1.11. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact covariant functor of abelian categories. We define the **right-derived functors** $R^i F : \mathcal{A} \to \mathcal{B}$ in the following way. For all objects $A \in \text{ob } \mathcal{A}$ choose an injective resolution I(A). Then we define $R^i F(A) = h^i(FI(A))$.

Theorem 4.1.12. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact covariant functor of abelian categories. Then

1. $R^i F$ is independent of the choice of the injective resolution².

2.
$$R^0 F = F$$

3. Every exact sequence

$$0 \longrightarrow A \longrightarrow A' \longrightarrow A'' \longrightarrow 0$$

induces a long exact sequence

$$0 \longrightarrow R^{0}F(A) \longrightarrow R^{0}F(A') \longrightarrow R^{0}F(A'') \longrightarrow$$

$$R^{1}F(A) \longrightarrow R^{1}F(A') \longrightarrow R^{1}F(A'') \longrightarrow$$

$$R^{2}F(A) \longrightarrow R^{2}F(A') \longrightarrow R^{2}F(A'') \longrightarrow$$

$$R^{n}F(A) \longrightarrow R^{n}F(A') \longrightarrow R^{n}F(A'')$$

4. For every commutative diagram

we have a commutative diagram

Definition 4.1.13. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact covariant functor of abelian categories. An object $J \in \text{ob } \mathcal{A}$ is said to be **acyclic** if $R^i F(J) = 0$ for all i > 0.

Theorem 4.1.14. Let \mathcal{A} and \mathcal{B} be abelian categories such that \mathcal{A} has enough injectives. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact covariant functor of abelian categories. If

²Injective resolutions are unique up to homotopy and cohomology objects are homotopy-invariant.

 $0 \longrightarrow AJ^0 \longrightarrow J^1 \longrightarrow \dots$

is an exact sequence with J^i acyclic for all i then

$$R^{i}F(A) = h^{i}(0 \to F(J^{0}) \to F(J^{1}) \to \dots)$$

Proof. Proof omitted.

- 1. $\mathbf{Sh}(\mathbf{X}) \to \mathbf{AbGrp} : \mathcal{F} \mapsto \mathcal{F}(X)$
- 2. $\mathfrak{Mod}(X) \to \mathbf{AbGrp} : \mathcal{F} \mapsto \mathcal{F}(X)$
- 3. $\mathbf{Mod}_{\mathbf{R}} \to \mathbf{Mod}_{\mathbf{R}} : M \mapsto \operatorname{Hom}_{R}(L, M)$ for some commutative ring R and R-module L.
- 4. $\mathbf{Sh}(X) \to \mathbf{Sh}(Y) : \mathcal{F} \mapsto f_*\mathcal{F}$ for some continuous function $f : X \to Y$

4.2 Cohomology of Sheaves

Proposition 4.2.1. Let X be a topological space. Then $\mathbf{Sh}(X)$ has products and the functor $F : \mathbf{Sh}(X) \to \mathbf{AbGrp}$ reflects them.

Proof. This is immediate from the definitions.

Proposition 4.2.2. Let X be a topological space, \mathcal{G} a sheaf on X and $\{\mathcal{F}_i\}_{i\in I}$ a family of sheaves on X. Then

$$\operatorname{Hom}\left(G,\prod_{i\in I}\mathcal{F}_i\right)\cong\prod_{i\in I}\operatorname{Hom}\left(\mathcal{G},\mathcal{F}_i\right)$$

Proof. Let $\pi_j : \prod_{i \in I} \mathcal{F}_i \to \mathcal{F}_j$ be the j^{th} projection map that the product comes equipped with. Fix an open set $U \subseteq X$ and define

$$\varphi_U : \operatorname{Hom}\left(\mathcal{G}, \prod_{i \in I} \mathcal{F}_i\right)(U) \to \left(\prod_{i \in I} \operatorname{Hom}(G, \mathcal{F}_i)\right)(U)$$
$$\psi \mapsto (\pi_i|_U \circ \psi)_{i \in I}$$

One easily verifies that this is indeed an isomorphism of abelian groups and is compatible with restriction maps. $\hfill \Box$

Theorem 4.2.3. Let (X, \mathcal{O}_X) be a ringed space. Then $\mathfrak{Mod}(X)$ has enough injectives.

Proof. Fix an \mathcal{O}_X -module $\mathcal{F} \in \mathfrak{Mod}(X)$ and $x \in X$. Then \mathcal{F}_x is an \mathcal{O}_x module. Since $\operatorname{Mod}_{\mathcal{O}_x}$ has enough injectives, we can find an injective \mathcal{O}_x -module and an injective homomorphism $\mathcal{F}_x \hookrightarrow I_x$. Let f_x denote the embedding of topological spaces $\{x\} \hookrightarrow X$. Then I_x can be viewed as a sheaf of modules on the singleton space $\{x\}$. Define $\mathcal{I} = \prod_{x \in X} f_{x*}I_x$. We claim that \mathcal{I} is injective. First note that, for all sheaves $\mathcal{G} \in \operatorname{ob} \mathfrak{Mod}(X)$, Proposition 4.2.2 implies that

$$\operatorname{Hom}(\mathcal{G}, \mathcal{I}) = \prod_{x \in X} \operatorname{Hom}(\mathcal{G}, f_{x*}I_x)$$

On the other hand, it is easy to see that we have an isomorphism

$$\operatorname{Hom}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{G}, f_{x_*}I_x)(X) \cong \operatorname{Hom}_{\mathcal{O}_x}(\mathcal{G}_x, I_x)$$

given by sending a morphism of \mathcal{O}_x -modules to the corresponding homomorphism of stalks at x. Now consider a diagram

$$\begin{array}{cccc} 0 & \longrightarrow & \mathcal{G} & \stackrel{\varphi}{\longrightarrow} & \mathcal{H} \\ & & \downarrow \\ & & \mathcal{I} \end{array}$$

Descending to stalks, we have a diagram

But I_x is injective so there must exist a morphism completing the above diagram to a commutative diagram. By the aforementioned isomorphism of Hom-sets, we can lift this homomorphism of \mathcal{O}_x -modules to a morphism of \mathcal{O}_X -modules to complete the first diagram into a commutative diagram. Hence \mathcal{I} is injective as claimed.

Now fix an object $\mathcal{F} \in \text{ob} \mathfrak{Mod}(X)$. We want to construct an injective resolution for \mathcal{F} . By the previous discussion, we can choose an injective object \mathcal{I}_0 so that we get a sequence

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0$$

Now set $\mathcal{F}^1 = \mathcal{I}^0/\mathcal{F}$ which is naturally an \mathcal{O}_X -module. This gives us a short exact sequence

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{F}^1 \longrightarrow 0$

We may choose an injective object \mathcal{I}^1 together with an injective morphism $\mathcal{F}^1 \to \mathcal{I}^1$ so that we get a sequence

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{I}^1$

Continuing in this way, we can construct an injective resolution of \mathcal{F} . Hence $\mathfrak{Mod}(X)$ has enough injectives.

Corollary 4.2.4. Let X be a topological space. Then Sh(X) has enough injectives.

Proof. Let \mathcal{O}_X be the constant sheaf on X associated to Z. Then (X, \mathcal{O}_X) is a ringed space and any $\mathcal{F} \in \text{ob} \operatorname{Sh}(X)$ is naturally an \mathcal{O}_X -module. Applying the Theorem then allows us to construct injective resolutions of sheaves of rings on X.

Definition 4.2.5. Let X be a topological space and $\mathcal{F} \in \mathbf{Sh}(X)$ a sheaf. Let $F : \mathbf{Sh}(X) \to \mathbf{AbGrp}$ be the functor sending a sheaf to its corresponding group of global sections. We define the i^{th} -sheaf cohomology group to be

$$H^i(X,\mathcal{F}) = R^i F(\mathcal{F})$$

Example 4.2.6. Let $\{x\} = X$ be a singleton space and $F : \mathbf{Sh}(X) \to \text{AbGrp}$ the functor which sends a sheaf to its associated global sections. We claim that $H^i(X, \mathcal{F}) = 0$ for all i > 0. Indeed, fix a sheaf $\mathcal{F} \in \text{ob } \mathbf{Sh}(X)$. Choose an injective resolution

$$0 \longrightarrow \mathcal{F} \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \dots$$

Taking stalks we get an exact sequence

$$0 \longrightarrow \mathcal{F}_x \longrightarrow I^0_x \longrightarrow I^1_x \longrightarrow \dots$$

But for a singleton space, stalks coincide with global sections so we infact have an exact sequence

$$0 \longrightarrow \mathcal{F}(X) \longrightarrow I^0(X) \longrightarrow I^1(X) \longrightarrow \dots$$

so that $H^i(X, \mathcal{F}) = 0$ for all i > 0.

Example 4.2.7. Let K be a field and $S = K[t_0, t_1]$. Let $X = \mathbb{P}^1_K = \operatorname{Proj}(S)$. Let $x \in X$ be the point corresponding to the ideal $I = \langle t_1 \rangle$. We have an exact sequence

$$0 \longrightarrow I \longrightarrow S \longrightarrow S'_I \longrightarrow 0$$

which yields an exact sequence of \mathcal{O}_X -modules

$$0 \longrightarrow \widetilde{I} \longrightarrow \widetilde{S} \longrightarrow \widetilde{S'_I} \longrightarrow 0$$

Letting $f : \{x\} \hookrightarrow X$ be the natural embedding and $\mathcal{I} = \tilde{I}$ the ideal sheaf corresponding to $\{x\}$, this exact sequence is infact

$$0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_X \longrightarrow f_*\mathcal{O}_{\{x\}} \longrightarrow 0$$

Note that we have an isomorphism

$$S(-1) \cong I$$
$$a \mapsto at_1$$

so that we have an isomorphism $\mathcal{I} \cong \mathcal{O}_X(-1)$. The exact sequence then becomes

$$0 \longrightarrow \mathcal{O}_X(-1) \longrightarrow \mathcal{O}_X \longrightarrow f_*\mathcal{O}_{\{x\}} \longrightarrow 0$$

Passing to cohomology groups yields a long exact sequence

$$0 \longrightarrow H^{0}(X, \mathcal{O}_{X}(-1)) \longrightarrow H^{0}(X, \mathcal{O}_{X}) \longrightarrow H^{0}(X, f_{*}\mathcal{O}_{\{x\}})$$
$$\longrightarrow H^{1}(X, \mathcal{O}_{X}(-1)) \longrightarrow H^{1}(X, \mathcal{O}_{X}) \longrightarrow H^{1}(X, f_{*}\mathcal{O}_{\{x\}})$$

Since $\mathcal{O}_X(-1)$ has no global sections, we have that $H^0(\mathcal{O}_X(-1)) = 0$. Moreover, we have $H^0(X, \mathcal{O}_X) = H^0(X, f_*\mathcal{O}_{\{x\}}) = K$.

4.3 Flasque Sheaves

Definition 4.3.1. Let X be a topological space and $\mathcal{F} \in \text{ob } \mathbf{Sh}(X)$. We say that \mathcal{F} is **flasque** if for all open $U \subseteq X$, the restriction morphism $\mathcal{F}(X) \to \mathcal{F}(U)$ is a surjective homomorphism.

Theorem 4.3.2. Let (X, \mathcal{O}_X) be a ringed space. If $\mathcal{I} \in ob \mathfrak{Mod}(X)$ is injective then \mathcal{I} is flasque.

Proof. Fix an open set $U \subseteq X$ and let $t \in \mathcal{I}(U)$. We need to exhibit an element of $\mathcal{I}(X)$ that maps to t under the restriction morphism $\mathcal{I}(X) \to \mathcal{I}(U)$. Define a sheaf \mathcal{L}_U by

$$\mathcal{L}_U(W) = \begin{cases} 0 & \text{if } W \not\subseteq U \\ \mathcal{O}_X(W) & \text{if } W \subseteq U \end{cases}$$

Clearly, \mathcal{L}_U is a subsheaf of \mathcal{O}_X . Now define a morphism of sheaves $\mathcal{L}_U \to \mathcal{I}$ by

$$\varphi_W : \mathcal{L}_U(W) \to \mathcal{I}(W) = \begin{cases} 0 & \text{if } W \not\subseteq U \\ a \mapsto at|_W & \text{if } W \subseteq U \end{cases}$$

We then have a commutative diagram

with first row exact. Since \mathcal{I} is injective, there exists a morphism $\psi : \mathcal{O}_X \to \mathcal{I}$ completing the diagram to a commutative diagram. Since ψ is a morphism of sheaves, we have a commutative diagram

$$\mathcal{O}_X(X) \xrightarrow{|U|} \mathcal{O}_X(U)$$

$$\downarrow^{\psi_X} \qquad \qquad \downarrow^{\psi_U}$$

$$\mathcal{I}(X) \xrightarrow{|U|} \mathcal{I}(U)$$

Chasing $1 \in \mathcal{O}_X(X)$ around the diagram shows that there must exist $s \in \mathcal{I}(X)$ mapping to $t \in \mathcal{I}(U)$ under $|_U$ so that \mathcal{I} is flasque.

Theorem 4.3.3. Let X be a topological space and $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$ a flasque sheaf. Then $H^i(X, \mathcal{F}) = 0$ for all i > 0.

Proof. Since $\mathcal{S}(X)$ has enough injectives, we can find an injective sheaf \mathcal{I} and an inclusion morphism $\mathcal{F} \subseteq \mathcal{I}$. Setting $\mathcal{G} = \mathcal{I}/\mathcal{F}$ yields a short exact sequence

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I} \longrightarrow \mathcal{G} \longrightarrow 0$

We first claim that \mathcal{G} is flasque. In order to do this, we shall show that we have an exact sequence

$$0 \longrightarrow \mathcal{F}(X) \longrightarrow \mathcal{I}(X) \xrightarrow{\alpha} \mathcal{G}(X) \longrightarrow 0$$

Since taking global sections is left-exact, it suffices to show that α is surjective. Fix $t \in \mathcal{G}(X)$. Since $\varphi : \mathcal{I} \to \mathcal{G}$ is surjective, the corresponding homomorphism of stalks is also surjective. This implies that there exists an open neighbourhood $U \subseteq X$ and en element $s \in \mathcal{I}(U)$ such that $\alpha(s) = t|_U$. Consider pairs (U_1, s_1) and (U_2, s_2) such that $s_i \in \mathcal{I}(U_i)$ and $\alpha(s_i) = t|_{U_i}$. Then $s_1|_{U_1 \cap U_2} - s_2|_{U_1 \cap U_2}$ map to 0 under α . Since the sequence

$$0 \longrightarrow \mathcal{F}(U_1 \cap U_2) \longrightarrow \mathcal{I}(U_1 \cap U_2) \longrightarrow \mathcal{G}(U_1 \cap U_2)$$

is exact, $s_1|_{U_1\cap U_2} - s_2|_{U_1\cap U_2} \in \mathcal{F}(U_1)$. Now, \mathcal{F} is flasque so there exists $r \in \mathcal{F}(U_1 \cup U_2)$ such that $r|_{U_1\cap U_2} = s_1|_{U_1\cap U_2} - s_2|_{U_1\cap U_2}$. Then $s_2 + r|_{U_2}$ and s_1 are compatible on overlaps. Indeed

$$(s_2 + r|_{U_2})|_{U_1 \cap U_2} = s_2|_{U_1 \cap U_2} + r|_{U_1 \cap U_2} = s_2|_{U_1 \cap U_2} + s_1|_{U_1 \cap U_2} - s_2|_{U_1 \cap U_2} = s_1|_{U_1 \cap U_2} =$$

Since \mathcal{I} is a sheaf, they glue to give a section $s \in \mathcal{I}(U_1 \cup U_2)$. By construction,

$$s|_{U_1} = s_1 \mapsto t|_{U_1}$$

 $s|_{U_2} = s_2 + r|_{U_2} \mapsto t|_{U_2}$

and so $s \mapsto t|_{U_1 \cup U_2}$ under α . Now let

$$\mathcal{A} = \{ (U, s) \mid U \subseteq X \text{ open } , s \in \mathcal{I}(U), s \mapsto t|_U \}$$

Define a partial order \leq on \mathcal{A} by declaring $(U, s) \leq (U', s')$ if and only if $U \subseteq U'$ and $s'|_U = s$. By Zorn's Lemma, there exists a maximal element in \mathcal{A} , say (U, s). We claim that, in fact, U = X. Suppose, for a contradiction, that $U \neq X$. Choose $x \in X \setminus U$ and an open neighbourhood $x \in V \subseteq X$ and $l \in \mathcal{I}(V)$ mapping to $t|_V$ under α . By the previous argumentation, we can construct $m \in \mathcal{I}(U \cup V)$ such that $m|_U = s, m|_V = l$ and $m \mapsto t|_{U \cap V}$. But this contradicts the maximality of (U, s) so we must have that U = X and so $s \in \mathcal{I}(X)$ is the desired element mapping to t under α . Thus α is surjective. Now consider the diagram

$$\begin{aligned}
\mathcal{I}(X) & \stackrel{\alpha}{\longrightarrow} & \mathcal{G}(X) \\
\downarrow_{|W} & \downarrow_{|W} \\
\mathcal{I}(W) & \stackrel{\beta}{\longrightarrow} & \mathcal{G}(W)
\end{aligned}$$

The exact same argumentation shows that β is surjective. Since \mathcal{I} is flasque, it follows that $|_W : \mathcal{G}(X) \to \mathcal{G}(W)$ is surjective when \mathcal{G} flasque as claimed.

We now have a long exact sequence of cohomology groups

$$0 \longrightarrow H^{0}(X, \mathcal{F}) \longrightarrow H^{0}(X, \mathcal{I}) \longrightarrow H^{0}(X, \mathcal{G}) \longrightarrow H^{1}(X, \mathcal{F}) \longrightarrow H^{1}(X, \mathcal{I}) \longrightarrow H^{1}(X, \mathcal{G})$$

Since \mathcal{I} is injective, it admits the trivial injective resolution

 $0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{I} \longrightarrow 0 \longrightarrow \dots$

so that $H^i(X, \mathcal{I}) = 0$ for all i > 0. Since $\alpha : \mathcal{I}(X) \to \mathcal{G}(X)$ is surjective, it then follows that $H^1(X, \mathcal{F}) = 0$. From this it follows that $H^1(X, \mathcal{G}) \cong H^{i+1}(X, \mathcal{F})$ for all i > 0. But \mathcal{G} is flasque so, by the same argumentation for \mathcal{F} , we see that $H^1(X, \mathcal{G}) = 0$ so that $H^2(X, \mathcal{F}) = 0$ by induction. Continuing in this way using induction we can show that $H^i(X, \mathcal{F}) = 0$ for all i > 0.

Corollary 4.3.4. Let X be a topological space and $\mathcal{F} \in \operatorname{ob} \operatorname{Sh}(X)$ a flasque sheaf. Suppose that \mathcal{F} admits a flasque resolution

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{I}^1 \longrightarrow \dots$$

Then

$$H^{i}(X, \mathcal{F}) = h^{i}(0 \to \mathcal{I}^{0}(X) \to \mathcal{I}^{1}(X) \to \dots)$$

Proof. Since each \mathcal{I}^j is flasque, Theorem 4.3.3 implies that $H^i(X, \mathcal{I}^j) = 0$ for all i > 0, $j \ge 0$. Hence each \mathcal{I}^j is acyclic and so appealing to Theorem 4.1.14 proves the claim. \Box

Corollary 4.3.5. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{F} an \mathcal{O}_X -module. Consider the functor

$$F:\mathfrak{Mod}(X)\to\mathbf{AbGrp}$$
$$G\mapsto G(X)$$

Then $H^i(X, \mathcal{F})$ is isomorphic to $RF^i(\mathcal{F})$. In other words, cohomology calculated in Sh(X) coincides with that calculated in $\mathfrak{Mod}(X)$.

Proof. Fix an injective resolution

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{I}^1 \longrightarrow \dots$

in $\mathfrak{Mod}(X)$. By Theorem 4.3.2 this is infact a flasque resolution. Corollary 4.3.4 then implies the assertion of the Corollary.

4.4 Cohomology of Affine Schemes

Proposition 4.4.1. Let R be a Noetherian ring and I an injective R-module. Then \tilde{I} is flasque.

Proof. Proof omitted.

Definition 4.4.2. Let X be a scheme and $b \in \mathcal{O}_X(X)$. Define

$$D(b) = \{ x \in X \mid b^{-1} \in \mathcal{O}_x \}$$

Remark. If X is an affine scheme then this coincides with the previous definition of D(b).

Proposition 4.4.3. Let X be a Noetherian scheme. Then X is affine if and only if there exists $b_1, \ldots, b_n \in \mathcal{O}_X(X)$ such that $D(b_i)$ are affine and $\mathcal{O}_X(X) = \langle b_1, \ldots, b_n \rangle$.

Proof. Proof omitted.

Definition 4.4.4. Let X be a scheme. We say that $x \in X$ is **closed** if $\{x\}$ is a closed subset of X.

Proposition 4.4.5. Let X be a Noetherian scheme and $Z \subseteq X$ a closed subset. Then there exists a closed point $x \in Z$.

Proof. Choose an open affine subset $U \subseteq X$ such that $U \cap Z \neq \emptyset$. If $Z \not\subseteq U$ then replace Z with $Z \cap (X \setminus U)$. Continuining in this way, we can construct a chain of closed subsets

$$\cdots \subsetneq Z_2 \subsetneq Z_1$$

But X is Noetherian so this process must terminate and so we can find a closed subset of Z that is contained in U, overloading notation, we also call it Z. Then Z = Spec(R) for some ring R. Let \mathfrak{m} be any maximal ideal of R. Then $\{\mathfrak{m}\}$ is a closed subset of Z. Since Z is closed in X, it then follows that \mathfrak{m} is closed in Z so that \mathfrak{m} is a closed point of X. \Box

Theorem 4.4.6. Let X be a Noetherian scheme. Then the following are equivalent:

1. X is affine.

- 2. $H^i(X, \mathcal{F}) = 0$ for all i > 0 and quasi-coherent \mathcal{F} .
- 3. $H^1(X, \mathcal{I}) = 0$ for all coherent ideal sheafs \mathcal{I} .

Proof.

(1) \implies (2): First suppose that X is affine so that $X = \operatorname{Spec}(R)$ for some ring R. Fix a quasi-coherent sheaf $\mathcal{F} \in \operatorname{ob} \mathfrak{Qco}(X)$ so that $\mathcal{F} = \widetilde{M}$ for some R-module M. Fix an injective resolution of M

 $0 \longrightarrow M \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \dots$

in $Mod_{\mathbf{R}}$. Then

$$0 \longrightarrow \widetilde{M} \longrightarrow \widetilde{I^0} \longrightarrow \widetilde{I^1} \longrightarrow \dots$$

is an flasque resolution of \mathcal{F} in $\mathfrak{Mod}(X)$ by Proposition 4.4.1. Corollary 4.3.4 then implies that

$$H^{i}(X, \mathcal{F}) = h^{i}(0 \to \widetilde{I^{0}}(X) \to \widetilde{I^{1}}(X) \to \dots)$$
$$= h^{i}(0 \to I^{0} \to I^{1} \to \dots)$$

which is exact. Hence $H^i(X, \mathcal{F}) = 0$ for all i > 0.

 $(2) \implies (3)$: This assertion is trivial considering all coherent ideal sheafs are themselves quasi-coherent sheaves.

(3) \implies (1): Fix a closed point $x \in X$ and an open affine set $x \in U$. Let $Y = X \setminus U$ so that both Y and $Y \cup \{x\}$ are closed. We first claim that any closed set $Z \subseteq X$ can be endowed with the structure of a closed subscheme of X. Indeed, consider the sheaf

$$\mathcal{I}_Z(W) = \{ a \in \mathcal{O}_X(W) \mid a^{-1} \notin \mathcal{O}_z \text{ for all } z \in W \cap Z \}$$

If $W = \operatorname{Spec}(R)$ is open affine then $\mathcal{I}_Z|_W = \widetilde{I}$ where $I \triangleleft R$ is the largest ideal of R such that $Z \cap WV(I)$. Hence \mathcal{I}_Z is quasi-coherent (in fact, it is coherent since X is Noetherian) and so Z has a closed subscheme structure.

We can apply this construction to the closed sets Y and $Y \cup \{x\}$ to get closed subschemes \mathcal{I}_Y and $\mathcal{I}_{Y \cup \{x\}}$. Since $Y \subseteq Y \cup \{x\}$, we have an inclusion of sheaves $\mathcal{I}_{Y \cup \{x\}} \subseteq \mathcal{I}_Y$. Letting $\mathcal{L} = \mathcal{I}_Y / \mathcal{I}_{Y \cup \{x\}}$ we have an exact sequence

 $0 \longrightarrow \mathcal{I}_{Y \cup \{x\}} \longrightarrow \mathcal{I}_Y \longrightarrow \mathcal{L} \longrightarrow 0$

Since $\mathcal{L}|_{X\setminus\{x\}} = 0$, it follows that \mathcal{L} is the skyscraper sheaf associated to $\kappa(x)$, the residue field at x. By assumption, we have $H^1(X, \mathcal{I}_{Y\cup\{x\}}) = 0$ so taking cohomology of the above exact sequence yields an

$$0 \longrightarrow H^0(X, \mathcal{I}_{Y \cup \{x\}}) \longrightarrow H^0(X, \mathcal{I}_Y) \xrightarrow{\alpha} H^0(X, \mathcal{L}) \longrightarrow 0$$

Since $H^0(X, \mathcal{L}) = \kappa(x)$ and α is surjective so there exists $b \in H^0(X, \mathcal{I}_Y)$ such that $\alpha(b) = 1 \in \kappa(x)$. But this means that any representative of $\alpha(b)$ is invertible in \mathcal{O}_x and so $x \in D(b)$. By construction, $D(b) \subseteq U$. Hence for every closed point $x \in X$, there is a global section $b \in \mathcal{O}_X(X)$ such that $x \in D(b)$. Hence we can construct a family of global sections b_i such that each $D(b_i)$ is affine and $\bigcup_{i \in I} D(b_i)$ contains all closed points of X. In fact, $X = \bigcup_{i \in I} D(b_i)$. Indeed, if this were not the case then $X \setminus \bigcup_{i \in I} D(b_i)$ would be closed and would thus contain a closed point of X which is a contradiction. Since X is Noetherian, we may assume that there are only finitely many such b_i . We now claim that $\mathcal{O}_X(X)$ is generated by the b_i . We will then be able to conclude that X is affine by Proposition 4.4.3.

Define a morphism of sheaves

$$\varphi_U : \left(\bigoplus_{i=1}^n \mathcal{O}_X\right)(U) \to \mathcal{O}_X(U)$$
$$(s_1, \dots, s_n) \mapsto \sum_{i=1}^n b_i|_U s_i$$

Let \mathcal{F} be the kernel of this morphism. Then we have an exact sequence of sheaves

$$0 \longrightarrow \mathcal{F} \longrightarrow \bigoplus_{i=1}^{n} \mathcal{O}_{X} \xrightarrow{\varphi} \mathcal{O}_{X} \longrightarrow 0$$

 φ is surjective since it is locally surjective. Indeed, for all $x \in X$, φ_x is surjective since there exists some b_i which is invertible in \mathcal{O}_x . Now define a filtration of length n, denoted \mathcal{G}_i , by

$$0 \subseteq \mathcal{O}_X \oplus 0 \cdots \oplus 0 \subseteq \mathcal{O}_X \oplus \mathcal{O}_X \oplus \cdots \oplus 0 \subseteq \cdots \subseteq \bigoplus_{i=1}^n \mathcal{O}_X$$

Then, clearly, $\mathcal{G}_i/\mathcal{G}_{i-1} \cong \mathcal{O}_X$. Let $\mathcal{F}_n = \mathcal{F}$ and inductively define $\mathcal{F}_{i-1} = \ker(\mathcal{F}_i \to \mathcal{G}_i/\mathcal{G}_{i-1})$. We then have exact sequences

$$0 \longrightarrow \mathcal{F}_{i-1} \longrightarrow \mathcal{F}_i \longrightarrow \mathcal{F}_{i/\mathcal{F}_{i-1}} \longrightarrow 0$$

Moreover, $\mathcal{F}_i/\mathcal{F}_{i-1} \subseteq \mathcal{G}_i/\mathcal{G}_{i-1} \subseteq \mathcal{O}_X$ so that $\mathcal{F}_i/\mathcal{F}_{i-1}$ is a coherent ideal sheaf. By hypothesis, we then have that $H^1(X, \mathcal{F}_i/\mathcal{F}_{i-1}) = 0$. Then ker $\mathcal{F}_0 = 0$ whence $H^1(X, \mathcal{F}_0) = 0$. By induction, it then follows that $H^1(X, \mathcal{F}_i) = 0$ for all *i* and, in particular, $H^1(X, \mathcal{F}) = 0$. We then have a short exact sequence of cohomology groups

$$0 \longrightarrow H^0(X, \mathcal{F}) \longrightarrow H^0(X, G_n) \xrightarrow{\varphi} H^0(X, \mathcal{O}_X) \longrightarrow 0$$

Hence φ is surjective on global sections whence there exists $(s_1, \ldots, s_n) \in G_n(X)$ such that $1 = \sum_i b_i s_i$ and so $\mathcal{O}_X(X) = (b_1, \ldots, b_n)$.

4.5 Čech Cohomology

Definition 4.5.1. Let X be a topological space and $\mathcal{F} \in \mathbf{Sh}(X)$ a sheaf. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X where I is a well-ordered set. Given $i_0, \ldots, i_p \in I$, let $U_{i_0,\ldots,i_p} = U_{i_0} \cap \cdots \cap U_{i_p}$. We define

$$C^{p}(\mathcal{U},\mathcal{F}) = \prod_{i_{0} < \dots < i_{p}} \mathcal{F}(U_{i_{0},\dots,i_{p}})$$

Moreover, we define a map $d^p : C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$ given by sending (s_{i_0, \dots, i_p}) to $(t_{i_0, \dots, i_{p+1}})$ where

$$t_{i_0,\dots,i_{p+1}} = \sum_{l=0}^{p+1} (-1)^l s_{i_0,\dots,\hat{i_l},\dots,i_{p+1}} |_{U_{i_0,\dots,i_{p+1}}}$$

where \hat{i}_l is understood to mean that the i_l -index is dropped. It can be checked that $d^{p+1}d^p = 0$ so that this forms a cochain complex of abelian groups which we refer to as a **Čech complex**. We define the p^{th} Čech cohomology group $\check{H}^p(\mathcal{U}, \mathcal{F})$ to be the p^{th} cohomology group of the aforementioned complex.

Proposition 4.5.2. Let X be a topological space and $\mathcal{F} \in \mathbf{Sh}(X)$ a sheaf. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X. Then

$$\check{H}^0(\mathcal{U},\mathcal{F})\cong\mathcal{F}(X)\cong H^0(X,\mathcal{F})$$

Proof. By definition, $\check{H}^0(\mathcal{U}, \mathcal{F}) = \ker d^0$. Now, $C^0(\mathcal{U}, \mathcal{F}) = \prod_{i \in I} \mathcal{F}(U_i)$ and $C^1(\mathcal{U}, \mathcal{F}) = \prod_{i < j} \mathcal{F}(U_i \cap U_j)$. Then

$$d^{1}: \prod_{i \in I} \mathcal{F}(U_{i}) \to \prod_{i < j} \mathcal{F}(U_{i} \cap U_{j})$$
$$(s_{i}) \mapsto ([s_{i} - s_{j}]|_{U_{i} \cap U_{j}})$$

So that ker $d^0 = \{ (s_i) \mid s_i \mid U_i \cap U_j = s_j \mid U_i \cap U_j \}$. But this is exactly the global sections of \mathcal{F} since it is a sheaf.

Example 4.5.3. Let K be a field and $X = \mathbb{P}_K^1 = \operatorname{Proj} K[t_0, t_1]$. Consider the open cover $\mathcal{U} = \{U_0, U_1\}$ where $U_0 = D_+(t_0), U_1 = D_+(t_1)$. The Čech complex of \mathcal{O}_X is

$$C^{\bullet}(\mathcal{U}, \mathcal{O}_X) : 0 \longrightarrow C^0(\mathcal{U}, \mathcal{O}_X) \longrightarrow C^1(\mathcal{U}, \mathcal{O}_X) \longrightarrow C^2(\mathcal{U}, \mathcal{O}_X) \longrightarrow \dots$$

Now, $C^p(\mathcal{U}, \mathcal{O}_X) = 0$ for all $p \ge 2$ since there are only two sets in the open cover. Moreover,

$$C^{0}(\mathcal{U}, \mathcal{O}_{X}) = \mathcal{O}_{X}(U_{0}) \oplus \mathcal{O}_{X}(U_{1}) = K[t_{0}, t_{1}]_{(t_{0})} \oplus K[t_{0}, t_{1}]_{(t_{1})}$$

and

$$C^{1}(\mathcal{U}, \mathcal{O}_{X}) = \mathcal{O}_{X}(U_{0} \cap U_{1}) = \mathcal{O}_{X}(D_{+}(t_{0}t_{1})) = K[t_{0}, t_{1}]_{(t_{0}t_{1})}$$

Writing $u = t_1/t_0$ and $v = t_0/t_1$, we first claim that $K[t_0, t_1]_{(t_0)} \cong K[u]$. Indeed, define a homomorphism

$$\begin{split} \varphi &: K[t_0,t_1]_{(t_0)} \to K[u] \\ \left[\frac{\displaystyle\sum_{i+j=n} a_{ij} t_0^i t_1^j}{t_0^n} \right] \mapsto \sum_{i+j=n} a_{ij} u^j \end{split}$$

which is clearly well-defined, surjective and injective. The Cech complex is then just

$$0 \longrightarrow K[u] \oplus K[v] \xrightarrow{d^0} K[u, 1/u] \longrightarrow 0$$

$$(f,g) \longmapsto f(u) - g(1/u)$$

so that

$$\ker d^{0} = \{ (f,g) \mid f(u) - g(1/u) = 0 \}$$
$$= \{ (f,g) \mid f = g \in K \} \cong K$$

Since d^0 is surjective, it then follows that $\check{H}^p(\mathcal{U}, \mathcal{O}_X) = 0$.

Example 4.5.4. Let K be a field, $X = \mathbb{P}_K^1 = \operatorname{Proj} K[t_0, t_1]$ and $Y = \operatorname{Spec} K$. Consider the open cover $\mathcal{U} = \{U_0, U_1\}$ where $U_0 = D_+(t_0), U_1 = D_+(t_1)$. The Čech complex of $\Omega_{X/Y}$ is

$$C^{\bullet}(\mathcal{U}, \Omega_{X/Y}) : 0 \longrightarrow C^{0}(\mathcal{U}, \Omega_{X/Y}) \longrightarrow C^{1}(\mathcal{U}, \Omega_{X/Y}) \longrightarrow C^{2}(\mathcal{U}, \Omega_{X/Y}) \longrightarrow \dots$$

Now, $C^p(\mathcal{U}, \Omega_{X/Y}) = 0$ for all $p \ge 2$ since there are only two sets in the open cover. Moreover, writing $u = t_1/t_0$ and $v = t_0/t_1$, we have

$$C^{0}(\mathcal{U},\Omega_{X/Y}) = \Omega_{X/Y}(U_{0}) \oplus \Omega_{X/Y}(U_{1}) = K[u]du \oplus K[v]dv$$

and

$$C^1(\mathcal{U}, \mathcal{O}_X) = \mathcal{O}_X(U_0 \cap U_1) = K[u, 1/u]du$$

so that d^0 is the map

$$(fdu, gdv) \mapsto f(u)du + \frac{1}{u^2}g(1/u)du$$

so that ker $d^0 = 0$ whence $\check{H}^p(\mathcal{U}, \Omega_{X/Y}) = 0$. Moreover, im d^0 contains $u^r \cdot du$ for all $r \in \mathbb{Z}$ except r = -1 so that $1/udu \notin \operatorname{im} d^0$. Then

$$\check{H}^{1}(\mathcal{U},\Omega_{X/Y}) = \frac{\ker d^{1}}{\operatorname{im} d^{0}} = \frac{K[u,1/u]du}{\operatorname{im} d^{0}} \cong K\frac{1}{u}du \cong K$$

Furthermore, $\check{H}^p(\mathcal{U}, \Omega_{X/Y}) = 0$ for all p > 1.

Example 4.5.5. Let K be a field, $X = \mathbb{P}_{K}^{1} = \operatorname{Proj} K[t_{0}, t_{1}]$ and \mathcal{F} the constant sheaf associated to \mathbb{Z} . Consider the open cover $\mathcal{U} = \{U_{0}, U_{1}\}$ where $U_{0} = D_{+}(t_{0}), U_{1} = D_{+}(t_{1})$. The Čech complex of \mathcal{F} is

$$C^{\bullet}(\mathcal{U},\mathcal{F}): 0 \longrightarrow C^{0}(\mathcal{U},\mathcal{F}) \longrightarrow C^{1}(\mathcal{U},\mathcal{F}) \longrightarrow C^{2}(\mathcal{U},\mathcal{F}) \longrightarrow \dots$$

Now, $C^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p \ge 2$ since there are only two sets in the open cover. Moreover,

$$C^{0}(\mathcal{U},\mathcal{F}) = \mathcal{F}(U_{0}) \oplus \mathcal{F}(U_{1}) = \mathbb{Z} \oplus \mathbb{Z}$$

and

$$C^1(\mathcal{U},\mathcal{F}) = \mathcal{F}(U_0 \cap U_1) = \mathbb{Z}$$

so that d^0 is the map

 $(m,n) \mapsto m-n$

Now, ker $d^0 = \{ (m, n) \mid m = n \} = \mathbb{Z}$ whence $\check{H}^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X) = \mathbb{Z}$. Moreover, d^0 is surjective so that $\check{H}^p(\mathcal{U}, \mathcal{F})$ for all p > 0.

Example 4.5.6. Let $X = S^1$ be endowed with the subspace topology from \mathbb{R} . Let $\alpha = (0, 1)$ and $\beta = (1, 0)$ so that $\mathcal{U} = \{U, V\}$ where $U = X \setminus \{\alpha\}$ and $V = X \setminus \{\beta\}$ form an open cover of X. Let \mathcal{F} be the constant sheaf on X associated to \mathbb{Z} . The Čech complex of \mathcal{F} is

$$C^{\bullet}(\mathcal{U},\mathcal{F}): 0 \longrightarrow C^{0}(\mathcal{U},\mathcal{F}) \longrightarrow C^{1}(\mathcal{U},\mathcal{F}) \longrightarrow C^{2}(\mathcal{U},\mathcal{F}) \longrightarrow \dots$$

Now, $C^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p \ge 2$ since there are only two sets in the open cover. Moreover,

$$C^0(\mathcal{U},\mathcal{F}) = \mathcal{F}(U_0) \oplus \mathcal{F}(U_1) = \mathbb{Z} \oplus \mathbb{Z}$$

and

$$C^1(\mathcal{U},\mathcal{F}) = \mathcal{F}(U_0 \cap U_1) = \mathbb{Z} \oplus \mathbb{Z}$$

so that d^0 is the map

$$(m,n) \mapsto (m-n,m-n)$$

We then see that ker $d^0 \cong \mathbb{Z}$ and im $d^0 \cong \mathbb{Z}$. So $\check{H}^0(X, \mathcal{F}) = \mathbb{Z}$ and also $\check{H}^1(\mathcal{U}, \mathcal{F}) = \mathbb{Z}$. Finally, $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for all p > 1.

Cohomology of Schemes 4.6

Definition 4.6.1. Let X be a topological space, $\mathcal{F} \in \mathbf{Sh}(X)$ a sheaf and $\mathcal{U} = \{U_i\}_{i \in I}$ and open cover of X for some well-ordered set I. Let $U_{i_0,\dots,i_p} = U_{i_0} \cap \dots \cap U_{i_p}$ and let f_{i_0,\dots,i_p} denote the inclusion map $U_{i_0,\ldots,i_p} \hookrightarrow X$. Let $\mathcal{F}_{i_0,\ldots,i_p}$ denote the sheaf $(f_{i_0,\ldots,i_p})_*(\mathcal{F}|_{U_{i_0,\ldots,i_p}})$. Define

$$\mathcal{C}^p(\mathcal{U},\mathcal{F}) = \prod_{i_0 < \cdots < i_p} \mathcal{F}_{i_0,\dots,i_p}$$

and a map

$$d^p: \mathcal{C}^p(\mathcal{U}, \mathcal{F}) \to \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})$$

pointwise on open $U \subseteq X$ by sending (s_{i_0,\ldots,i_p}) to $(t_{i_0,\ldots,i_{p+1}})$ where

$$t_{i_0,\dots,i_{p+1}} = \sum_{l=0}^{p+1} (-1)^l s_{i_0,\dots,\hat{i_l},\dots,\hat{i_{p+1}}} |_{U_{i_0,\dots,i_{p+1}} \cap U}$$

We can similarly check that $d^{p+1}d^p = 0$ so that we get a complex

$$\mathcal{C}^{\bullet}(\mathcal{U},\mathcal{F}): 0 \longrightarrow \mathcal{C}^{0}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{0}} \mathcal{C}^{1}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{1}} \dots$$

We extend this to a complex

$$\mathcal{C}^{\bullet}(\mathcal{U},\mathcal{F}): 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{0}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{0}} \mathcal{C}^{1}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{1}} \dots$$
$$s \in \mathcal{F}(W) \longmapsto (s|_{W \cap U_{i}})$$

$$s \in \mathcal{F}(W) \longmapsto (s|_{W \cap U_i})$$

called the **sheaf Čech complex**.

Lemma 4.6.2. Let X be a topological space, $\mathcal{F} \in \mathbf{Sh}(X)$ a sheaf and $\mathcal{U} = \{U_i\}_{i \in I}$ an open cover of X for some well-ordered set I. The the sheaf $\check{C}ech$ complex of \mathcal{F} is exact.

Proof. We first claim that

$$0 \longrightarrow \mathcal{F} \xrightarrow{d^{-1}} \mathcal{C}^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d^0} \mathcal{C}^1(\mathcal{U}, \mathcal{F})$$

is exact by the definition of a sheaf. Indeed, fix an open $W \subseteq X$ and suppose that $(s|_{W \cap U_i}) =$ 0. Since $W \cap U_i$ is an open cover of W, the zero sections glue together uniquely to give the zero section in $\mathcal{F}(W)$ so d^{-1} must be injective. To show exactness at $\mathcal{C}^0(\mathcal{U}, \mathcal{F})$, we need to show that ker $d^0 \subseteq \operatorname{im} d^{-1}$. To this end, fix an open $W \subseteq X$. Suppose that $(s_i) \in \ker d^0$. Then by definition of the differential, we have that

$$(s_i - s_j)|_{U_{i,j} \cap W} = 0$$

But then $s_i|_{U_i\cap U_i\cap W} = s_i|_{U_i\cap U_i\cap W}$ so that the s_i are compatible on overlaps of the open cover $U_i \cap W$ of W. The sheaf axiom then implies that the s_i glue together to give a unique $s \in \mathcal{F}_W$ such that $s|_{U_i \cap W} = s_i$. But then $(s_i) \in \operatorname{im} d^{-1}$ by the definition of d^{-1} .

We now want to show that

$$\mathcal{C}^{p-1}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{p-1}} \mathcal{C}^p(\mathcal{U},\mathcal{F}) \xrightarrow{d^p} \mathcal{C}^{p+1}(\mathcal{U},\mathcal{F})$$

for all $p \ge 1$. It suffices to show this on the level of stalks. In other words, for all $x \in X$, we need to show that

$$\mathcal{C}^{p-1}(\mathcal{U},\mathcal{F})_x \xrightarrow{d_x^{p-1}} \mathcal{C}^p(\mathcal{U},\mathcal{F})_x \xrightarrow{d_x^p} \mathcal{C}^{p+1}(\mathcal{U},\mathcal{F})_x$$

is exact. Since we are working with stalks, we can throw away any U_i for which $x \notin U_i$ and assume that $X = U_0 = \cdots = U_n$ by replacing X and each U_i with $\bigcap_{i=1}^n U_i$. Now define a map

$$e^{p}: \mathcal{C}^{p}(\mathcal{U}, \mathcal{F})_{x} \to \mathcal{C}^{p-1}(\mathcal{U}, \mathcal{F})_{x}$$
$$[W, (s_{i_{0}, \dots, i_{p}})] \mapsto [W, (t_{i_{0}, \dots, i_{p-1}})]$$

where

$$t_{i_0,\dots,i_{p-1}} = \begin{cases} s_{j,i_0,\dots,i_{p-1}} & \text{if } i_0 \neq j, j = \min I \\ 0 & \text{if } i_0 = j \end{cases}$$

Now, let $\delta_{i_0,j} = 0$ if $i_0 = j$ and 1 otherwise, then

$$\begin{aligned} (d_x^{p-1}e^p + e^{p+1}d_x^p)([W, s_{i_0, \dots, i_p}]) &= d_x^{p-1}e^p([W, s_{i_0, \dots, i_p}]) + e^{p+1}d_x^p \\ &= d_x^{p-1}(\delta_{i_0, j}[W, s_{0, i_0, \dots, i_{p-1}})] + e^{p+1}\sum_{l=0}^{p+2}(-1)^l[W, s_{i_0, \dots, \widehat{i_l}, i_{p+1}}] \\ &= \delta_{i_0, j}\sum_{m=0}^p(-1)^m[W, s_{0, i_0, \dots, \widehat{i_m}, \dots, i_p}] + \delta_{i_0, j}\sum_{l=0}^{p+2}(-1)^l[W, s_{0, i_0, \dots, \widehat{i_l}, \dots, i_{p+1}}] \\ &= [W, s_{i_0, \dots, i_p}] \end{aligned}$$

so that $d_x^{p-1}e^p + e^{p+1}d_x^p = \text{id.}$ Now fix $[W, s_{i_0, \dots, i_p}] \in \ker d_x^p$. Applying this formula, we have

$$d_x^{p-1}e^p([W, s_{i_0, \dots, i_p}]) = [W, s_{i_0, \dots, i_p}]$$

so that $[W, s_{i_0,...,i_p}] \in \text{im} \, d_x^{p-1}.$

Theorem 4.6.3. Let X be a topological space and $\mathcal{U} = \{U_i\}$ a finite open cover of \mathcal{X} . If $\mathcal{F} \in Sh(X)$ is flasque then

$$\check{H}^p(\mathcal{U},\mathcal{F})=0$$

for all p > 0.

Proof. Consider the Čech complex resolution of \mathcal{F}

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \dots$$

Since \mathcal{F} is flasque, so is $\mathcal{F}|_{U_{i_0,\ldots,i_p}}$ and, in particular, $\mathcal{F}_{i_0,\ldots,i_p}$ is also flasque. Hence $\mathcal{C}^p(\mathcal{U},\mathcal{F})$ is flasque for all $p \geq 0$ whence the above is a flasque resolution of \mathcal{F} . By Corollary 4.3.4 we know that $H^p(X,\mathcal{F})$ is calculated on the sequence

$$0 \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \dots$$

On the other hand, the cohomology of the first sequence is $\check{H}^p(\mathcal{U}, \mathcal{F})$ by definition and so $\check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(\mathcal{U}, \mathcal{F})$ by definition. But the latter is 0 by Theorem 4.3.3.

Theorem 4.6.4. Let X be a Noetherian scheme such that the intersection of any two open affine subschemes is again affine. Let $\mathcal{U} = \{U_i\}$ be a finite open affine cover of X. Then

$$\check{H}^p(\mathcal{U},\mathcal{F})\cong H^p(X,\mathcal{F})$$

for all quasi-coherent sheaves \mathcal{F} on X.

Proof. Consider the Čech resolution of \mathcal{F}

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{C}^0(\mathcal{U}, \mathcal{F}) \longrightarrow \mathcal{C}^1(\mathcal{U}, \mathcal{F}) \longrightarrow \dots$$

We first claim that $H^l(X, \mathcal{C}^p(\mathcal{U}, \mathcal{F})) = 0$ for all $p \ge 0$ and l > 0. It is in fact enough to show that $H^l(X, \mathcal{F}_{i_0, \dots, i_p}) = 0$ for all $p \ge 0$ and l > 0. By hypothesis, U_{i_0, \dots, i_p} is affine so Theorem 4.4.6 implies that

$$H^{l}(U_{i_{0},...,i_{p}},\mathcal{F}|_{U_{i_{0},...,i_{p}}})=0$$

for all p > 0 and $l \ge 0$. By Proposition 4.4.1, we can choose a flasque resolution

$$0 \longrightarrow \mathcal{F}|_{U_{i_0,\dots,i_p}} \longrightarrow \mathcal{I}^0 \longrightarrow \mathcal{I}^1 \longrightarrow \dots$$

where each \mathcal{I}^{j} is quasi-coherent. Then $(f_{i_0,\ldots,i_p})_*\mathcal{I}^{j}$ are flasque and quasi-coherent. Then

$$0 \longrightarrow \mathcal{F}_{i_0,\dots,i_p} \longrightarrow (f_{i_0,\dots,i_p})_* \mathcal{I}^0 \longrightarrow (f_{i_0,\dots,i_p})_* \mathcal{I}^1 \longrightarrow \dots$$

is also a flasque resolution of $\mathcal{F}_{i_0,\ldots,i_p}$. Hence, $H^l(X,\mathcal{F}_{i_0,\ldots,i_p})$ are calculated by the complex

$$0 \longrightarrow (f_{i_0,\dots,i_p})_* \mathcal{I}^0(X) \longrightarrow (f_{i_0,\dots,i_p})_* \mathcal{I}^1(X) \longrightarrow \dots$$

But this is the same as the complex

$$0 \longrightarrow \mathcal{I}^0(U_{i_0,\dots,i_p}) \longrightarrow \mathcal{I}^1(U_{i_0,\dots,i_p}) \longrightarrow \dots$$

which calculates the cohomology of $H^l(U_{i_0,\ldots,i_p}, \mathcal{F}|_{U_{i_0,\ldots,i_p}})$. But this is 0 by Theorem 4.4.6. So $H^l(X, \mathcal{F}_{i_0,\ldots,i_p}) = 0$ as claimed. This shows that the $\mathcal{C}^p(\mathcal{U}, \mathcal{F})$ are acyclic with respect to the global section functor so by Theorem 4.1.14 we can calculate $H^l(X, \mathcal{F})$ using the Čech complex of \mathcal{F} . This is given by the cohomology of

$$0 \longrightarrow \mathcal{C}^{0}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})(X) \longrightarrow \dots$$

which is just the ordinary Cech complex

$$0 \longrightarrow C^0(\mathcal{U}, \mathcal{F}) \longrightarrow C^1(\mathcal{U}, \mathcal{F}) \longrightarrow \dots$$

But we know that the cohomology of this is $H^p(X, \mathcal{F}) = \check{H}^p(X, \mathcal{F})$ so we are done. \Box

Remark. We give a remark on when the conditions of the previous Theorem hold. Let $f: X \to Y$ be a morphism of schemes with Y = Spec(R) affine. We say that f is **projective** if there exists a commutative diagram

where g is a closed immersion. If Y is not affine then we can define \mathbb{P}^n over open affine subsets and glue them together. We say that f is **quasi-projective** if there exists a commutative diagram

with g an open immersion. Now assume that R is Noetherian. Then the intersection of any two open affine subschemes in X is again affine.

5 Cohomology of Projective Schemes

Theorem 5.0.1. Let K be a field and $X = \mathbb{P}_K^n = \operatorname{Proj}(S)$ where $S = K[t_0, \ldots, t_n]$. Then

- 1. $H^0(X, \mathcal{O}_X(d))$ is the K-vector space generated by all monomials in t_0, \ldots, t_n of degree d.
- 2. $\dim_K H^n(X, \mathcal{O}_X(d)) = \dim_K H^0(X, \mathcal{O}_X(-n-1-d)).$
- 3. $H^p(X, \mathcal{O}_X(d)) = 0$ for all p > n.
- 4. $H^p(X, \mathcal{O}_X(d)) = 0$ for all 0 .

Proof.

<u>Part 1:</u> We have that

$$H^{0}(X, \mathcal{O}_{X}(d)) = \mathcal{O}_{X}(d)(X) \cong \{ (s_{i}) \mid s_{i} \in \mathcal{O}_{X}(d)(U_{i}), s_{i}|_{U_{i} \cap U_{j}} = s_{j}|_{U_{i} \cap U_{j}} \}$$

where $U_i = D_+(t_i)$. Now, $\mathcal{O}_X(d)(U_i) = S(d)_{(t_i)}$ so that $s_i \in \mathcal{O}_X(d)(U_i)$ satisfies $s_i = \frac{f_i}{t_i^{e_i}}$ where f_i is homogeneous of degree $d + e_i$ in S. Then

$$s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \iff \frac{f_i}{t_i^{e_i}} = \frac{f_j}{t_j^{e_j}} \in S(D)_{(t_1 t_2)}$$
$$\iff \frac{f_i}{t_i^{e_i}} = \frac{f_j}{t_j^{e_j}} \in S_{(t_1 t_2)}$$
$$\iff f_i t_j^{e_j} = f_j t_i^{e_i} \in S$$

in S. Now, S is a unique factorisation domain so that $t_j^{e_j} \mid f_j$ and $t_i^{e_i} \mid f_i$. Hence there exists a homogeneous $g \in S$ of degree d such that $g = \frac{f_i}{t_i^{e_i}} = s_i$ for all i.

Conversely, given any homogeneous $g \in S$ of degree d, we have a section (s_i) in $\mathcal{O}_X(d)(X)$ given by setting $s_i = \frac{g}{1}$.

<u>Part 2:</u> We shall only prove the case where $-d - n - 1 \leq 0$. Now, the group $H^n(X, \mathcal{O}_X(d))$ is calculated by the Čech complex

$$\dots \longrightarrow C^{n-1}(\mathcal{U}, \mathcal{O}_X(d)) \xrightarrow{d^{n-1}} C^n(\mathcal{U}, \mathcal{O}_X(d)) \xrightarrow{d^n} 0$$

which is just

$$\dots \longrightarrow \prod_{i_0 < \dots < i_{n-1}} S(d)_{(t_{i_0} \dots t_{i_{n-1}})} \xrightarrow{d^{n-1}} S(d)_{(t_1 \dots t_n)} \xrightarrow{d^n} 0$$

where $\mathcal{U} = \{ D_+(t_i) \}_i$. We need to calculate im d^{n-1} . To this end, fix $\sigma \in S(d)_{t_0...t_n}$. We may assume that

$$\sigma = \frac{t_0^{m_0} \dots t_n^{m_n}}{(t_0 \dots t_n)^l}$$

where $\sum_{i=1}^{n} m_i = d + (n+1)l$. We want to determine when such a σ is not in im d^{n-1} . If there is an *i* for which $m_i \ge l$ then we would be able to cancel such a t_i from the denominator so that σ would be in the image of the factor of $C^{n-1}(\mathcal{U}, \mathcal{F})$ corresponding to a missing U_i . Moreover, we can assume that $m_i = 0$ for some *i*, otherwise we may decrease *l*. Then

$$d + (n+1)l = \sum_{i=0}^{n-1} m_i \le n(l-1) = nl - n$$

so that $d+l \leq -n$ and so $l \leq -n-d$. But by assumption we have $-n-d \leq 1$ so that l = 1. Since each $m_i < l$, the only possibility is then $\sigma = \frac{1}{t_0 \dots t_n}$ which corresponds to the case where d = -n - 1. But $\sigma \notin \operatorname{im} d^{n-1}$ so we have

$$H^{n}(X, \mathcal{O}_{X}(d)) = \begin{cases} 0 & \text{if } -d - n - 1 < 0\\ K \cdot \frac{1}{t_{0} \dots t_{n}} & \text{if } -d - n - 1 = 0\\ \cong H^{0}(X, \mathcal{O}_{X}(-d - n - 1)) \end{cases}$$

<u>Part 3:</u> This follows immediately from the fact that $H^p(X, \mathcal{O}_X(d)) = \check{H}^p(X, \mathcal{O}_X(d))$. But $C^p(X, \mathcal{O}_X(d)) = 0$ for all p > n.

<u>Part 4:</u> We may assume that $n \geq 2$ or there is nothing to prove. Let Y be the closed subscheme defined by $\langle t_n \rangle$ and $g: Y \to \mathbb{P}^n_K$ the corresponding closed immersion. Then $Y \cong \mathbb{P}^{n-1}_K = \operatorname{Proj} K[t_0, \ldots, t_{n-1}]$ and we have an exact sequence

$$0 \longrightarrow \widetilde{\langle t_n \rangle} \longrightarrow \mathcal{O}_X \longrightarrow g_* \mathcal{O}_Y \longrightarrow 0$$

Now, we have an isomorphism

$$S(-1) \to \langle t_n \rangle$$
$$s \mapsto t_n s$$

so that $\widetilde{\langle t_n \rangle} = \mathcal{O}_X(-1)$. Hence the exact sequence takes the form

$$0 \longrightarrow \mathcal{O}_X(-1) \longrightarrow \mathcal{O}_X \longrightarrow g_*\mathcal{O}_Y \longrightarrow 0$$

Tensoring with $\mathcal{O}_X(d)$ yields

$$0 \longrightarrow \mathcal{O}_X(d-1) \longrightarrow \mathcal{O}_X(d) \longrightarrow g_*\mathcal{O}_Y(d) \longrightarrow 0$$

Taking cohomology yields a long exact sequence

$$0 \longrightarrow H^{0}(X, \mathcal{O}_{X}(d-1)) \longrightarrow H^{0}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{0}(X, g_{*}\mathcal{O}_{Y}(d))$$

$$\longrightarrow H^{1}(X, \mathcal{O}_{X}(d-1)) \longrightarrow H^{1}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{1}(X, g_{*}\mathcal{O}_{Y}(d))$$

$$\longrightarrow H^{n-1}(X, \mathcal{O}_{X}(d-1)) \longrightarrow H^{n-1}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{n-1}(X, g_{*}\mathcal{O}_{Y}(d))$$

$$\longrightarrow H^{n}(X, \mathcal{O}_{X}(d-1)) \longrightarrow H^{n}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{n}(X, g_{*}\mathcal{O}_{Y}(d))$$

Now, it is easy to see that $H^p(X, g_*\mathcal{O}_Y(d)) = H^p(Y, \mathcal{O}_Y(d))$ for all $p \ge 0$ since pushing forward a sheaf is an exact functor. Moreover, $H^n(Y, \mathcal{O}_Y(d)) = 0$ by Part 3 so the long exact sequence becomes

$$0 \longrightarrow H^{0}(X, \mathcal{O}_{X}(d-1)) \longrightarrow f_{1} \longrightarrow H^{0}(X, \mathcal{O}_{X}(d)) \longrightarrow f_{2} \longrightarrow H^{0}(Y, \mathcal{O}_{Y}(d)) \longrightarrow \delta \longrightarrow H^{1}(X, \mathcal{O}_{X}(d-1)) \longrightarrow \alpha \longrightarrow H^{1}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{1}(Y, \mathcal{O}_{Y}(d)) \longrightarrow H^{1}(X, \mathcal{O}_{X}(d-1)) \longrightarrow H^{n-1}(X, \mathcal{O}_{X}(d)) \longrightarrow H^{n-1}(Y, \mathcal{O}_{Y}(d)) \longrightarrow \delta \longrightarrow H^{n}(X, \mathcal{O}_{X}(d-1)) \longrightarrow \gamma \longrightarrow H^{n}(X, \mathcal{O}_{X}(d)) \longrightarrow 0$$

Now,

$$\dim_{K}(\operatorname{im} \gamma) = \dim_{K} H^{n}(X, \mathcal{O}_{X}(d)) = \dim_{K} H^{0}(X, \mathcal{O}_{X}(-n-1-d)) = \binom{-2-d}{n-1}$$
$$\dim_{K} H^{n}(X, \mathcal{O}_{X}(d-1)) = \dim_{K} H^{0}(X, \mathcal{O}_{X}(-n-d)) = \binom{-d-1}{n-1}$$

By the Rank-Nullity Theorem, we then have that

$$\dim_K(\operatorname{im}\beta) = \dim_K(\ker\gamma) = \binom{-d-1}{n-1} - \binom{-2-d}{n-1} = \binom{-2-d}{n-2}$$

On the other hand,

$$\dim_{K} H^{n-1}(Y, \mathcal{O}_{Y}(d)) = \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(-(n-1)-d-1)) = \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(-n-d))$$
$$= \binom{-n-d+(n-1)-1}{(n-1)-1} = \binom{-d-2}{n-2}$$

so we must have that $\dim_K(\ker \beta) = 0$ whence β is injective. Similarly,

$$\dim_{K}(\ker \alpha) = \dim_{K}(\operatorname{im} \delta) = \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(d)) - \dim_{K}(\ker \delta)$$

$$= \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(d)) - \dim_{K}(\operatorname{im} f_{2})$$

$$= \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(d)) - \dim_{K} H^{0}(X, \mathcal{O}_{X}(d)) + \dim_{K}(\ker f_{2})$$

$$= \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(d)) - \dim_{K} H^{0}(X, \mathcal{O}_{X}(d)) + \dim_{K}(\operatorname{im} f_{1})$$

$$= \dim_{K} H^{0}(Y, \mathcal{O}_{Y}(d)) - \dim_{K} H^{0}(X, \mathcal{O}_{X}(d)) + \dim_{K} H^{0}(X, \mathcal{O}_{X}(d-1))$$

$$= \binom{n-2+d}{n-2} - \binom{n-1+d}{n-1} + \binom{n+d-1}{n}$$

$$= 0$$

so that α is injective and δ is the zero map. Now, by induction n, we see that $H^p(Y, \mathcal{O}_Y(d)) = 0$ for all $0 whence the maps <math>H^p(X, \mathcal{O}_X(d-1)) \xrightarrow{\theta_p} H^p(X, \mathcal{O}_X(d))$ are isomorphisms for 0 .

Now, using Čech cohomology, the maps β_p are induced by the maps

$$S(d-1)_{(t_{i_0}\dots t_{i_p})} = \mathcal{O}_X(d-1)(U_{i_0,\dots,i_p}) \to \mathcal{O}_X(d)(U_{i_0,\dots,i_p}) = S(d)_{(t_{i_0}\dots t_{i_p})}$$

which is just multiplication by t_n . Hence θ_p is just multiplication by t_n . Now let $\mathcal{F} = \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_X(d)$. Then

$$\mathcal{F}(U_{i_0,\dots,i_p}) = \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_X(d)(U_{i_0,\dots,i_p}) \cong \bigoplus_{d \in \mathbb{Z}} S(d)_{t_{i_0}\dots t_{i_p}} \cong S_{t_{i_0}\dots t_{i_p}}$$
$$\sum_{d \in \mathbb{Z}} \lambda_d \longleftrightarrow (\lambda_d)$$

The Cech complex is then

$$0 \longrightarrow C^0(\mathcal{U}, \mathcal{F}) \longrightarrow C^1(\mathcal{U}, \mathcal{F}) \longrightarrow \dots$$

which is nothing but

$$0 \longrightarrow \prod S_{t_{i_0}} \longrightarrow \prod S_{t_{i_0 t_{i_1}}} \longrightarrow \dots$$

Localising this complex at t_n gives

$$0 \longrightarrow \prod S_{t_{i_0}t_n} \longrightarrow \prod S_{t_{i_0}t_{i_1}t_n} \longrightarrow \dots$$

But this is the Cech complex of $\mathcal{F}|_{U_n}$ with respect to the cover $\mathcal{U}' = \{U_i \cap U_n\}_{i \in I}$. But U_n is affine and so $\mathcal{F}|_{U_n}$ is quasi-coherent and so

$$\check{H}^p(\mathcal{U}',\mathcal{F}|_{U_n}) = H^p(U_n,\mathcal{F}|_{U_n}) = 0$$

for all p > 0. Hence $H^p(X, \mathcal{F})|_{t_n} = 0$ for all $0 . But this means that for all <math>w \in H^p(X, \mathcal{F})$, there exists r such that $t_n^r w = 0$ which implies that for all $u \in H^p(X, \mathcal{O}_X(d))$, there exists s such that $t_n^s u = 0$. Now, β_p was shown to be multiplication by t_n and we have shown that multiplication by t_n eventually kills every element of $H^p(X, \mathcal{O}_X(d-1))$. Hence, in order for β_p to be an isomorphism, we must have that $H^p(X, \mathcal{O}_X(d)) = 0$ for all 0 .

Proposition 5.0.2. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{F} a quasi-coherent sheaf on X. Then there exists $l, m \in \mathbb{Z}$ and a surjective homomorphism

$$\varphi: \bigoplus_{i=1}^{l} \mathcal{O}_X \to \mathcal{F}(m)$$

Proof. Proof omitted.

Theorem 5.0.3. Let K be a field and X a closed subscheme of \mathbb{P}^n_K and $f: X \to \mathbb{P}^n_K$ the corresponding closed immersion. If \mathcal{F} is a quasi-coherent sheaf on X then

$$H^p(X, \mathcal{F}(d)) = 0$$

for all p > 0 and for sufficiently $d \in \mathbb{Z}$.

Proof. By definition, we have

$$f_*(\mathcal{F}(d)) \cong (f_*\mathcal{F})(d) = (f_*\mathcal{F}) \otimes_{\mathcal{O}_{\mathbb{P}_K^n}} \mathcal{O}_{\mathbb{P}_K^n}(d)$$

Moreover,

$$H^p(X, \mathcal{F}(d)) \cong H^p(\mathbb{P}^n_K, (f_*\mathcal{F})(d))$$

so we can replace X with \mathbb{P}_{K}^{n} and \mathcal{F} with $f_*\mathcal{F}$ and so we can assume that $X = \mathbb{P}_{K}^{n}$. Now choose, $l, m \in \mathbb{Z}$ so that we have a surjective homomorphism

$$\varphi: \bigoplus_{i=1}^{l} \mathcal{O}_X \to \mathcal{F}(m)$$

Let \mathcal{G} be the kernel of this morphism so that we have an exact sequence

$$0 \longrightarrow \mathcal{G} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_X \longrightarrow \mathcal{F}(m) \longrightarrow 0$$

Tensoring with $\mathcal{O}_X(d-m)$ yields

$$0 \longrightarrow \mathcal{G}(d-m) \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_X(d-m) \longrightarrow \mathcal{F}(d) \longrightarrow 0$$

Taking cohomology groups yields a long exact sequence

By Theorem 5.0.1, $H^p\left(\bigoplus_{i=1}^l \mathcal{O}_X(d-m)\right) = 0$ for all p > 0 and large enough $d \in \mathbb{Z}$. By reverse induction, $H^{p+1}(X, \mathcal{G}(d-m)) = 0$ for all p+1 > n since, using Čech cohomology, there are not enough open sets to intersect for p+1 > n. This then forces $H^n(X, \mathcal{F}(d)) = 0$ for large enough d and so by induction on p we have $H^p(X, \mathcal{F}(d)) = 0$ for all p > 0 and large enough d.

Theorem 5.0.4. Let K be a field and X a closed subscheme of \mathbb{P}^n_K and $f: X \to \mathbb{P}^n_K$ the corresponding closed immersion. If \mathcal{F} is a quasi-coherent sheaf on X then $H^p(X, \mathcal{F})$ is a finite-dimensional K-vector space for all p.

Proof. As before, we can assume that $X = \mathbb{P}_K^n$. Let $m, l \in \mathbb{Z}$ be such that we have an exact sequence

$$0 \longrightarrow \mathcal{G} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_X \longrightarrow \mathcal{F}(m) \longrightarrow 0$$

Tensoring with $\mathcal{O}_X(-m)$ yields

$$0 \longrightarrow \mathcal{G}(-m) \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_X(-m) \longrightarrow \mathcal{F}(d) \longrightarrow 0$$

Taking cohomology groups yields a long exact sequence

$$\cdots \longrightarrow H^p(X, \mathcal{G}(d-m)) \longrightarrow H^p\left(X, \bigoplus_{i=1}^l \mathcal{O}_X(-m)\right) \longrightarrow H^n(X, \mathcal{F}(d))$$

$$\longrightarrow H^{p+1}(X, \mathcal{G}(-m)) \longrightarrow \cdots$$

By revere induction on p, we see that for all p + 1 > n we have $H^p(X, \mathcal{G}(-m)) = 0$. By Theorem 5.0.1, we know that

$$\dim_K H^p\left(X, \bigoplus_{i=1}^l \mathcal{O}_X(-m)\right) < \infty$$

for all p. This implies that $\dim_K H^n(X, \mathcal{F}) < \infty$. By induction on p, we then have that $\dim_K H^p(X, \mathcal{F}) < \infty$.

5.1 Euler Characteristic and Hilbert Polynomials

Definition 5.1.1. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \to \mathbb{P}^n_K$. Let \mathcal{F} be a coherent sheaf over X. We define the **Euler** characteristic of \mathcal{F} to be

$$\chi(X,\mathcal{F}) = \sum_{p} (-1)^{p} \dim_{K} H^{p}(X,\mathcal{F})$$

Lemma 5.1.2. Let K be a field and X a scheme projective over K. Suppose that we have an exact sequence of coherent sheaves over X

$$0 \longrightarrow \mathcal{F}_1 \longrightarrow \mathcal{F}_2 \longrightarrow \ldots \longrightarrow \mathcal{F}_r \longrightarrow 0$$

Then

$$\sum_{i=0}^{r} (-1)^i \chi(X, \mathcal{F}_i) = 0$$

Proof. If $r \leq 2$ then the Lemma is trivial. Now suppose that r = 3. Then we have a long exact sequence of cohomology groups

$$0 \longrightarrow H^{0}(X, \mathcal{F}_{1}) \longrightarrow H^{0}(X, \mathcal{F}_{2}) \longrightarrow H^{0}(X, \mathcal{F}_{3}) \longrightarrow$$

$$\overset{\leftarrow}{\longrightarrow} H^{1}(X, \mathcal{F}_{1}) \longrightarrow H^{1}(X, \mathcal{F}_{2}) \longrightarrow H^{1}(X, \mathcal{F}_{3}) \longrightarrow$$

$$\overset{\leftarrow}{\longrightarrow} H^{n-1}(X, \mathcal{F}_{1}) \longrightarrow H^{n-1}(X, \mathcal{F}_{2}) \longrightarrow H^{n-1}(X, \mathcal{F}_{3}) \longrightarrow$$

$$\overset{\leftarrow}{\longrightarrow} H^{n}(X, \mathcal{F}_{1}) \longrightarrow H^{n}(X, \mathcal{F}_{2}) \longrightarrow H^{n}(X, \mathcal{F}_{3}) \longrightarrow 0$$

By the Rank-Nullity Theorem, it follows that

$$\dim_K H^0(X, \mathcal{F}_1) - \dim_K H^0(X, \mathcal{F}_2) + \dots = 0$$

Now suppose that r > 3. Let \mathcal{G} be the image of $\mathcal{F}_1 \to \mathcal{F}_2$. Then we have exact sequences

$$0 \longrightarrow \mathcal{F}_1 \longrightarrow \mathcal{F}_2 \longrightarrow \mathcal{G} \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{F}_3 \longrightarrow \mathcal{F}_4 \longrightarrow \dots$$

Then by induction we have $\chi(X, \mathcal{F}_1) - \chi(X, \mathcal{F}_2) + \chi(X, \mathcal{G}) = 0$ and $\chi(X, \mathcal{G}) - \chi(X, \mathcal{F}_3) + \cdots = 0$. Subtracting these two equations gives us the Lemma.

Definition 5.1.3. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \to \mathbb{P}^n_K$. Let \mathcal{F} be a coherent sheaf over X. We define the **Hilbert polynomial** of \mathcal{F} to be the function

$$\phi_{\mathcal{F}} : \mathbb{Z} \to \mathbb{Z}$$
$$d \mapsto \chi(X, \mathcal{F}(d))$$

Theorem 5.1.4. Let K be a field and X a scheme projective over K so that we have a closed immersion $f: X \to \mathbb{P}^n_K$. Let \mathcal{F} be a coherent sheaf over X. Then $\phi_{\mathcal{F}} \in \mathbb{Q}[d]$.

Proof. Proof omitted (see handwritten notes).

Example 5.1.5. Let K be a field and $X = \mathbb{P}_K^n$. We shall calculate $\phi_{\mathcal{O}_X}$. We have that

 $\phi_{\mathcal{O}_X}(d) = \chi(X, \mathcal{O}_X(d)) = \dim_K H^0(X, \mathcal{O}_X(d)) - \dim_K H^1(X, \mathcal{O}_X(d)) + \dots = \dim_K H^0(X, \mathcal{O}_X(d))$

for large enough d. So we have

$$\phi_{\mathcal{O}_X}(d) = \binom{n+d}{d}$$

for all d.

Example 5.1.6. Let X be a closed subscheme of \mathbb{P}^n_K where K is a field, defined by $\langle h \rangle$ where h is homogeneous of degree r. We have an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_K}(-r) \longrightarrow \mathcal{O}_{\mathbb{P}^n_K} \longrightarrow f_*\mathcal{O}_X \longrightarrow 0$$

so we have

$$\phi_{\mathcal{O}_X}(d) = \phi_{f_*\mathcal{O}_X}(d) = \phi_{\mathcal{O}_{\mathbb{P}_K^n}}(d) - \phi_{\mathcal{O}_{\mathbb{P}_K^n}}(d-r) = \binom{d+n}{d} - \binom{d-r+n}{d-r}$$