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1 Basic Definitions

1.1 Sheaves and Stalks

Definition 1.1.1. Let X be a topological space, Op(X) the poset of open sets of X consid-
ered as a category and C a category. We define a presheaf of C-objects on X, denoted F ,
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to be a contravariant functor F : Op(X) → C. Given an open set U ⊆ X, we refer to the
elements of F(U) as the sections of U . Moreover, given an inclusion of open sets V ⊆ U
we say that F(U ⊆ V ) = F (V ) → F (U) is the restriction of U to V where s ∈ F(U) is
mapped to s|V ∈ F(V ).

Finally, we define a sheaf on X to be a presheaf F such that if

U =
⋃
i

Ui

for some open sets Ui ⊆ X and if si ∈ F(Ui) with si|Ui∩Uj = sj|Ui∩Uj for all i, j then there
exists a unique s ∈ F(U) such that s|Ui = si for all i.

Example 1.1.2. Let X be a topological space. Then the functor F : Op(X) → AbGrp
given by

F(U) = { continuous functions U → R }

is a sheaf.

Example 1.1.3. From now on, C will either be AbGrp,Ring or ModR for some commu-
tative ring R. Moreover, sheaf shall be synonymous with sheaf of C-objects.

Definition 1.1.4. Let (I,≤) be a directed poset. Suppose for each i ∈ I we have an abelian
group Ai and for each pair i ≤ j we have a map ϕij : Ai → Aj with ϕii = idAi such that
whenever i ≤ j ≤ k, we have ϕik = ϕjk ◦ ϕij. Then we say that (Ai, ϕij) is a directed
system of abelian groups.

Moreover, consider pairs (Ai, ai) with ai ∈ Ai. Define an equivalence relation on these
pairs where (Ai, ai) ∼ (Aj, aj) if and only if there exists a k ≥ i, j such that ϕik(ai) = ϕjk(aj).
Denoting the equivalence class of (Ai, ai) under∼ as [Ai, ai], we may define a group operation
on the set of all such equivalence classes as follows:

[Ai, ai] + [Aj, aj] = [Ak, ϕik(ai) + ϕjk(aj)]

for any k ≥ i, j. We call this group the direct limit of the direct system (Ai, ϕij) and we
denote it by lim−→i∈I Ai.

Definition 1.1.5. Let X be a topological space, F a presheaf of abelian groups on X and
x ∈ X. Consider the directed poset (I,⊆) consisting of open sets containing x, ordered
by inclusion. Then F(Ui), together with the restriction homomorphisms, define a direct
system. We define the stalk of F at x by

Fx = lim−→
Ui∈I
F(Ui)

Definition 1.1.6. Let X be a topological space and F ,G presheaves of abelian group on
X. We define a morphism of presheaves to be a natural transformation ϕ : F → G. In
other words, ϕ is given by a collection of group homomorphisms ϕU : F(U) → G(U) such
that if V ⊆ U then the diagram

F(U) G(U)

F(V ) G(V )

ϕU

|V |V
ϕV
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is commutative. Moreover, we say that ϕ is an isomorphism of presheaves if it has an in-
verse. We denote by Sh(X) the category of all sheaves on X together with their morphisms.

Remark. Given a morphism of presheaves ϕ : F → G and a point x ∈ X there is a natural
homomorphism of stalks

ϕx : Fx → Gx
(U, s) 7→ (U,ϕU(s))

Theorem 1.1.7. Let X be a topological space and F a presheaf of abelian groups on X.
Then there exists a sheaf F+ and a morphism α : F → F+ such that, given any sheaf G
and morphism of sheaves ϕ : F → G, ϕ factors through F+ uniquely:

F F+

G

α

ϕ

for some morphism of sheaves F+ → G. We shall refer to F+ as the sheaf associated to
F or the sheafification of F .

Proof. Fix an open set U ⊆ X and let {Ui }i∈I be an open cover for some indexing set I.
We claim that

F+(U) =

{
s : U →

⋃̇
x∈U

Fx

∣∣∣∣∣ ∀x ∈ U, s(x) ∈ Fx
∃x ∈ W ⊆ U open, t ∈ F(W ) s.t s(y) = [W, t] ∀ y ∈ W

}
defines the desired sheaf along with the natural restriction morphisms. This clearly defines
a presheaf so it thus suffices to show that F+ satisfies the sheaf axiom. Let si ∈ F+(Ui) be
sections such that for all i, j ∈ I we have si|Ui∩Uj = sj|Ui∩Uj . Define a function

s : U →
⋃̇
x∈U

Fx

y 7→ si(y)

for some i such that y ∈ Ui. Then s is well-defined since the sections si all agree on overlaps.
Now, given any x ∈ U , we clearly have s(x) ∈ Fx since s(x) = si(x) for any i ∈ I such that
Ui 3 x. Furthermore, for each si, there exists an open neighbourhood x ∈ Wi ⊆ U and a
section t ∈ F(W ) such that for all y ∈ Wi we have si(y) = [W, t]. Clearly, we can take any of
these Wi and the same will apply for s whence s ∈ F+(U). Lastly, we must show that such
an s is unique. To this end, suppose there exists a t ∈ F+(U) such that their restrictions
si, ti ∈ F+(Ui) agree. Then for all x ∈ U , there exists a Ui 3 x such that si(x) = ti(x) and
so s(x) = t(x). Since this holds for all x ∈ U , we must have that s = t. We have thus shown
that F+ is indeed a sheaf.

Now, given s ∈ F(U), define α : F → F+ by setting αU(s) to be the function mapping
x ∈ U to [U, s]. This is easily seen to be a morphism of presheaves as it is compatible with
the natural restriction morphisms.

To see that ϕ factors uniquely through F+, we must construct a unique morphism of
sheaves ψ : F+ → G. To this end, fix s ∈ F+(U) and for each Ui in the open cover,
choose si ∈ F(Ui) such that αUi(si) = s|Ui . Now set ti = ϕ(si). Since ϕ is a morphism
of presheaves, it follows that ti|Ui∩Uj = tj|Ui∩Uj . Since G is a sheaf, there exists a unique
t ∈ G(U) such that t|Ui = ti. We must therefore have that ψU(s) = t and we are done.
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Remark. Let X be a topological space and F a presheaf. For all x ∈ X, we have a
homorphism of groups

αx : Fx → F+
x

This is infact an isomorphism since the sections of F+ are locally just sections of F .

Example 1.1.8. Let X = { a, b } be a topological space where the open sets are ∅, X, U =
{ a } and V = { b }. Define a presheaf of abelian groups on X by setting

F(∅) = 0, F(X) = Z, F(U) = 0, F(V ) = 0

with the natural restriction homomorphisms. We first calculate the stalks of F . Recall that
the stalk at a is given by

Fa =
{ (A, s) | A 3 a, s ∈ F(A) }

∼
where ∼ is the equivalence relation given by (U, s) ∼ (V, t) if and only if there exists an
open a ∈ W ⊆ U ∩ V such that s|W = t|W . We have that

{ (A, s) | A 3 a, s ∈ F(A) } = { (U, 0), . . . , (X,−1), (X, 0), (X, 1), . . . }

Clearly the elements of this set are all equivalent so we have Fa = 0. Similarly, we find that
Fb = 0. It then follows that all sections of F+ are necessarily 0.

Example 1.1.9. Let X = { a, b } be a topological space where the open sets are ∅, X, U =
{ a } and V = { b }. Define a presheaf of abelian groups on X by setting

F(∅) = 0, F(X) = 0, F(U) = Z, F(V ) = Z

We again calculate the stalks of this presheaf. The set to consider in the direct limit for Fa
is

{ (A, s) | A ∈ a, s ∈ F(A) } = { (X, 0), . . . , (U,−1), (U, 0), (U, 1), . . . }

Clearly the only equivalent elements are (X, 0) and (U, 0) so Fa = Z. Similarly, we have
Fb = Z. By the definition of the sheafification, we then have that F+(U) = F+(V ) = Z
and F+(X) = Z⊕ Z.

Definition 1.1.10. Let X be a topological space and ϕ : F → G a morphism of presheaves.
We define the presheaf kernel of ϕ, denoted kerϕpre by

(kerϕpre)(U) = ker (ϕU : F(U)→ G(U))

Similarly, we define the presheaf image of ϕ, denoted imϕpre by

(imϕpre)+(U) = im(ϕU : F(U)→ G(U))

Furthermore, if F and G are also sheaves then we also have the sheaf kernel, denoted kerϕ,
defined in the same way and the sheaf image, defined by imϕ = (imϕpre)+.

Finally, we say that ϕ is injective if kerϕ = 0 and surjective if imϕ = G.

Proposition 1.1.11. Let X be a topological space and ϕ : F → G a morphism of presheaves.
Then kerϕpre and imϕpre are presheaves of abelian groups. If, in addition, F and G are
sheaves then kerϕ is also a sheaf.
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Proof. Since the kernel of any homomorphisms of abelian groups is again an abelian group,
kerϕpre indeed assigns an abelian group to each open set U ⊆ X. Furthermore, since the
mapping between the empty sets is vacuously 0, we have that (kerϕpre)(∅) = 0. Finally,
the restriction homomorphisms are made evident in the following diagram1:

F(U) F(V )

(kerϕpre)(U) (kerϕpre)(V )

|V

|kerϕU |kerϕV

A similar argument also shows that imϕpre is a presheaf. To show that kerϕ is a sheaf,
assume that we are given an open set U ⊆ X and an open cover U =

⋃
i∈I Ui for some

indexing set I. Suppose that si ∈ (kerϕ)(Ui) such that si|Ui∩Uj = sj|Ui∩Uj for all i, j. We
need to show that there exists a unique s ∈ (kerϕ)(U) such that s|Ui = si for all i ∈ I.
Since (kerϕ)(U) ⊆ F(U) and F is a sheaf, it follows that the sections local si glue together
to give a global section s ∈ F(U). We claim that such an s is the desired global section. To
this end, we have that ϕ(si) = 0 for all i ∈ I. Since G is a sheaf, these local sections must
glue together to give a global section ϕ(s) = 0. Hence s ∈ (kerϕ)(U). The uniqueness of
such an s follows immediately from the fact that F is a sheaf.

Example 1.1.12. Let X = { a, b } be a topological space where the open sets are ∅, X, U =
{ a } and V = { b }. Define a sheaf on X by setting

F(∅) = 0, F(X) = Z⊕ Z, F(U) = Z, F(V ) = Z

Define the sheaf G on X by setting

G(∅) = 0, F(X) = Z/2Z⊕ Z/2Z, F(U) = Z/2Z, F(V ) = Z/2Z

Furthermore, define a morphism of sheaves between ϕ : F → G by setting

ϕX : F(X)→ G(X)

(m,n) 7→ (m,n)

ϕU : F(U)→ G(U)

m 7→ m

ϕV : F(V )→ G(V )

n 7→ n

Then (kerϕ)(X) = 2Z× 2Z and (kerϕ)(U) = 2Z = (kerϕ)U and imϕ = G.

Theorem 1.1.13. Let ϕ : F → G be a morphism of shaves on a topological space X. Then

1. ϕ is injective if and only if ϕx : Fx → Gx is injective for all x ∈ X.

2. ϕ is surjective if and only if ϕx : Fx → Gx is surjective for all x ∈ X.

3. ϕ is an isomorphism if and only if ϕx : Fx → Gx is an isomorphism for all x ∈ X.

1while slightly overloading notation for the restriction maps

5



Proof. Part 1: First suppose that ϕ is injective, fix some x ∈ X and choose an equivalence
class [U, s] ∈ Fx. Then 0 = ϕx([U, s]) = [U,ϕU(s)] implies that there exists an open W 3 x
with W ⊆ U such that ϕU(s)|W = 0. This in turn implies that ϕW (s|W ) = 0. Now ϕ is
injective by hypothesis so s|W = 0. Hence 0 = [W, s] = [U, s] as desired.

Now suppose that ϕx is injective for all x ∈ X. Given an open set U ⊆ X, assume that
ϕU(s) = 0 with s ∈ F(U). We then have that

0 = [U, 0] = [U,ϕU(s)] = ϕx([U, s])

Since ϕx is injective, we thus have that [U, s] = 0. This implies that there exists some W 3 x
open with W ⊆ U and s|W = 0. Since this applies to all x ∈ X and since F is a sheaf, it
follows that s = 0.

Part 2: Assume that ϕ is surjective, in other words, (imϕpre)+ = G. Then the homomor-
phism ϕx : Fx → Gx is just

ϕx : Fx → (imϕpre)+
x
∼= imϕpre

x

which is trivially surjective.
Now suppose that ϕx is surjective for all x ∈ X. We want to show that for all open

neighbourhoods U ⊆ X, the group homomorphism

ϕU : F(U)→ G(U)

is surjective. To this end, fix an open U ⊆ X and let t ∈ G(U). We need to show that
there exists an s ∈ F(U) such that ϕU(s) = t. By hypothesis, given x, we have that for all
[W, b] ∈ Gx, there exists a [V, a] ∈ Fx such that

ϕx([V, a]) = [W, b]

In particular, there exists an s ∈ F(U) and an open neighbourhood x ∈ V ⊆ U such that
ϕx([V, s]) = [U, t]. But the left hand side of this equation is equal to [V, ϕU(sx)]. By the
definition of a stalk, this is equivalent to there existing an open neighbourhood x ∈ W ⊆ V
such that ϕU(s)|W = t. In other words, sections of G are just locally the images of sections
of F . Passing to the sheafification, we then have that imF = G as desired.

Part 3: First suppose that ϕ is an isomorphism. Then it is injective and surjective and by
Parts 1 and 2, ϕx is an isomorphism for each x ∈ X.

Conversely, suppose that each ϕx is an isomorphism for all x ∈ X. By Parts 1 and 2,
ϕ is injective and surjective. Let H = imϕpre. Since ϕ is injective, F(U) is isomorphic to
H(U) for all open sets U ⊆ X. In particular, H is a sheaf isomorphic to F . Since ϕ is
surjective, H+ = G. Since H is a sheaf, H = G. Hence ϕ is an isomorphism.

Definition 1.1.14. Let X be a topological space. We define a complex of sheaves to be a
sequence

· · · F−1 F0 F1 F2 · · ·ϕ0 ϕ1 ϕ2 ϕ2

such that imϕi ⊆ kerϕi+1 for all i. We say that this complex is an exact sequence if we
have imϕi = kerϕi+1 for all i. Furthermore, an exact sequence of the form

0 F G H 0
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is called a short exact sequence.

Example 1.1.15. Let X be a topological space and A an abelian group. Define a presheaf
F by setting F(U) = A for all non-empty open sets U ⊆ X. We call F+ the constant
sheaf associated to A. Also define the sheaf G by

G(U) = { continuous functions U → A }

where A is equipped with the discrete topology. Define a morphism ϕ : F → G by sending
s ∈ F(U) to the constant function

fs : U → A

u 7→ s

Then ϕ induces an isomorphism of sheaves ϕ : F+ → G. This follows from showing the
stalks of the two sheaves are isomorphic. Indeed, to show that ϕx : F+

x → Gx is an injective,
suppose that ϕx([U, s]) = 0. By definition, we have that [U,ϕU(s)] = 0. This just means
that, locally, ϕU(s) is the zero function whence s = 0 and so [U, s] = 0.

For surjectivity, choose [V, t] ∈ Gx. We need to exhibit a [U, s] ∈ Fx such that ϕx([U, s]) =
[V, t]. By definition, t is a continuous function t : V → A so set s = t(x) and U = t−1({ s }).
We claim that [U, s] is the desired element of Fx. We have that ϕx([U, s]) = [U,ϕU(s)] =
[U, fs]. Then [U, fs] ∼ [V, t] if and only if there exists an open neighbourhood x ∈ W such
that W ⊆ U ∩ V and fs|W = t|W . However, we may simply take W = U and we are done.

Definition 1.1.16. Let X and Y be a topological space and f : X → Y a continuous
mapping. If F is a presheaf on X, we define the direct image of F with respect to f ,
denoted f∗, to be the assignment

(f∗F)(V ) = F(f−1V )

giving rise to a presheaf on Y .

Proposition 1.1.17. Let X and Y be topological spaces, f : X → Y a continuous mapping
and F a sheaf on X. Then (f∗F) is a sheaf on Y .

Proof. The direct image is clearly a presheaf on Y with the natural restriction morphisms.
To show that it is a sheaf, let V ⊆ Y be an open neighbourhood and {Vi }i∈I an open cover
of V where I is some indexing set. Choose ti ∈ (f∗F)(Vi) such that ti|Vi∩Vj = tj|Vi∩Vj for all
i, j. Each ti is in F(f−1Vi) and satisfies ti|f−1Vi∩f−1Vj = tj|f−1Vi∩f−1Vj for all i, j. Since F is
a sheaf, there exists a unique t ∈ f−1V such that t|f−1Vi = ti for all i. Hence there exists a
t ∈ (f∗F)(V ) such that t|Vi = ti for all i. Thus, the direct image is a sheaf.

Example 1.1.18. Let X be a topological space, x ∈ X and A an abelian group. Define a
sheaf on X by setting

F(U) =

{
A if x ∈ U
0 if x 6∈ U

where U ⊆ X is an open set. This is referred to as the skyscraper sheaf associated to A
at x. Let Z = {x } and define the inclusion map

i : Z ↪→ X

Let G be the constant sheaf on Z associated to A. Then F = i∗G.
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1.2 Results from Commutative Algebra

Henceforth, all rings are assumed to be commutative.

Definition 1.2.1. Let R be a ring. We say that R is local if it has a unique maximal ideal.

Definition 1.2.2. Let R and S be local rings with maximal ideals mR and mS. A homo-
morphism of rings α : R→ S is said to be local if α(mR) ⊆ mS.

Definition 1.2.3. Let R be a ring and I / R an ideal. We define the radical of I, denoted√
I to be the set

√
I = { r ∈ R | rn ∈ I, n ∈ N }

Proposition 1.2.4. Let R be a ring and I / R an ideal. Then

√
I =

⋂
p⊇I

p

where the intersection is taken over all prime ideals p contained in I.

Proof. Omitted.

Proposition 1.2.5. Let K be algebraically closed and I / K[t1, . . . , tn] a maximal ideal.
Then I = (t1 − a1, . . . , tn − an) for some ai ∈ K.

Proof. Omitted.

Definition 1.2.6. Let R be a ring and S ⊆ R a subset. We say that S is multiplicatively
closed if 1R ∈ S and s, t ∈ S implies that st ∈ S.

Definition 1.2.7. Let R be a ring and S ⊆ R a multiplicatively closed subset. Consider
the set { r

s

∣∣∣ r ∈ R, s ∈ S }
of formal fractions. Define an equivalence relation on this set with a/s ∼ b/s′ if and only if
there exists s′′ ∈ S such that s′′(as′ − bs) = 0. We define

S−1A =
{ r
s

∣∣∣ r ∈ R, s ∈ S } / ∼
to be the ring of fractions of R with respect to S with ring operations given by

a

s
+
b

t
=
at+ bs

st
a

s
· b
t

=
ab

st

Example 1.2.8. Let R = Z and S = Z\ { 0 }. Then S−1R = Q.

Remark. There is a natural inclusion homomorphism

α : R ↪→ S−1R

r 7→ r

1
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Proposition 1.2.9. Let R be a ring and I / R an ideal. Then

S−1I =
{ r
s
∈ S−1R

∣∣∣ r ∈ I }
is an ideal of S−1R. Moreover, any ideal of S−1R is of this form.

Proof. Fix an ideal of I / R. We must show that (S−1I,+) is a subgroup of (S−1R,+) and
that for all S−1I absorbs multiplication by elements of S−1R.

S−1I clearly contains the additive identity of S−1R since I contains the additive identity
of R. Fix a/b, c/d ∈ S−1I where a, c ∈ I and b, d ∈ S. Then

a

b
+
c

d
=
ad+ bc

bd

Now, S is multiplicatively closed so bd ∈ S. Furthermore, ad + bc ∈ I so indeed a/b +
c/d ∈ S−1I. Clearly, all elements of S−1I have additive inverses so (S−1I,+) is indeed
a subgroup of (S−1R, I). To prove that S−1 absorbs multiplication by elements of S−1R,
choose a/b ∈ S−1I and c/d ∈ S−1R. Then

a

b
· c
d

=
ac

bd

As before, bd ∈ S and ac ∈ I so the product of the two fractions is again in S−1I whence it
is an ideal of S−1R.

To show that any ideal of the ring of fractions is of this form, choose an ideal J / S−1R.
Let I be the set consisting of all numerators of fractions in J . We claim that I is an ideal
of R, it would then immediately follow that J = S−1I.

I clearly contains the additive identity of R since J is an ideal of S−1R. Furthermore,
given a, b ∈ I, a + b ∈ I since a/1 + b/1 = (a + b)/1 ∈ J . I also clearly contains additive
inverses and so (I,+) is a subgroup of (R,+). Now let i ∈ I and r ∈ R. Choose any fraction
in J with i as its numerator, say i/j ∈ J . Then i/j · r/1 = ir/j ∈ J and so ir ∈ I whence
I is an ideal.

Proposition 1.2.10. Let R be a ring and S ⊆ R a multiplicatively closed subset. Then
there is a one-to-one inclusion preserving correspondence{

prime p / R

p ∩ S = ∅

}
←→

{
prime p / S−1R

}
p←→ S−1p

Proof. We must check that the correspondence is well-defined and the two mappings are
mutually inverse. To this end, fix a prime ideal p /R such that p∩S = ∅ and let a/b · c/d ∈
S−1p. We need to show that either a/b ∈ S−1p or c/d ∈ S−1p. Choose u, v such that
ab/cd = u/v. Then there exists z ∈ S such that z(abv − cdu) = 0. It then follows that
zabv ∈ p. Since p is prime, one of z, a, b or v must be in p. But p∩ S = ∅ so it cannot be z
or v. Hence either a or b is in p whence either a/b or c/d ∈ S−1p.

Conversely, suppose that q / S−1R is prime. We need to show that the ideal p consisting
of all numerators in q is prime. To this end, let ab ∈ p. Choose a fraction in q with ab as its
numerator, say ab/cd. By definition this is equal to a/b · c/d ∈ q. But q is prime so either
a/c ∈ q or b/d ∈ q whence either a or b is in p. Thus the maps are well defined and do map
prime ideals to prime ideals.

We must now check that the maps are mutually inverse. Label the forward mapping ϕ
and the backwards map ψ. First let p/R be prime. We want to show that ψ(ϕ(p)) = p.

9



Definition 1.2.11. Let R be a ring and p / R a prime ideal. Define a multiplicative subset
S = R \ p. We call the ring of fractions S−1R the localisation of R at p and denote it Rp.

Proposition 1.2.12. Let R be a ring and p /R prime. Then Rp is a local ring with unique
maximal ideal given by pp := S−1p.

Proof. Let m be an ideal not contained in pp. Choose a fraction a/b ∈ m. Then both a and
b are contained in R\p. By definition of the ring of fractions, this implies that the fraction
b/a is an element of Rp. Hence 1Rp = a/b · b/a ∈ m whence m = Rp.

Remark. Let R be a ring and let S = { 1, b, b2, . . . } be a multiplicatively closed power set
for some b ∈ R. We shall write Rb = S−1R.

Moreover, note that all these definitions can be generalised to arbitrary modules over a
commutative ring. More precisely, if R is a commutative ring, M an R-module and S−1 a
multiplicative set in R then S−1M is an S−1R-module. Moreover, if M → N is an R-module
homomorphism, we then have an induced homomorphism S−1M → S−1N of S−1R-modules.
In fact, S−1(·) is an exact functor ModR →ModS−1R.

Definition 1.2.13. Let R be a ring and M,N R-modules. Let L denote the free R-module
generated by elements of M ×N . Let E be the sub-R-module of L generated by elements
of the form

1. (m+m′, n)− (m,n)− (m′, n′)

2. (m,n+ n′)− (m,n)− (m,n′)

3. (rm, n)− r(m,n)

4. (m, rn)− r(m,n)

where m,m′ ∈ M , n, n′ ∈ N and r ∈ R. We define the tensor product of M and N over
R to be

M ⊗R N = L/E

and we write m⊗ n for the equivalence class of (m,n).

Proposition 1.2.14. Let R be a ring and N,M and P R-modules. Then

1. If M × N → P is an R-bilinear map then there exists a unique homomorphism of
modules M ⊗R N → P .

2. R⊗RM ∼= M.

3. M ⊗R N = N ⊗RM .

4. (M ⊗R N)⊗R P ∼= M ⊗R (N ⊗R P ).

5. M ⊗R (N ⊕ P ) ∼= (M ⊗R N)⊕ (M ⊗R P ).

6. If S ⊆ R is multiplicatively closed we have S−1M ∼= S−1R⊗RM .

7. If I / R we have R/I ⊗RM ∼= M/IM .

Proof. Ommitted.
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Remark. Let A,B,C and D be rings and α : A → B, β : A → C. Then we have a
commutative diagram

B

A B ⊗A C

C

ϕα

β ψ

where ϕ sends b to b⊗ 1 and ψ sends c to 1⊗ c.

Proposition 1.2.15. Let A,B,C and D be rings and suppose we have a commutative
diagram

B

A D

C

ϕα

β ψ

Then there exists a unique homomorphism of A-modules B⊗AC → D extending the diagram
to a commutative diagram

B

A B ⊗A C D

C

ϕα

β ψ

1.3 Spectrum of a Ring

Definition 1.3.1. Let R be a ring. We define the spectrum of R, denoted SpecR, to
be the set of all prime ideals of R. Moreover, given any ideal I / R, we define V (I) =
{ p ∈ SpecR | I ⊆ p }.

Lemma 1.3.2. Let R be a ring. Then

1. For all I, J / R we have V (IJ) = V (I ∩ J) = V (I) ∪ V (J).

2. For all families of ideals Iα / R we have V (
∑

α Iα) =
⋂
α V (Iα).

3. For all I, J / R we have V (I) ⊆ V (J) if and only if
√
I ⊇
√
J .

Proof.

Part 1: We have that

p ∈ V (IJ) ⇐⇒ IJ ⊆ p ⇐⇒ I ⊆ p or J ⊆ p ⇐⇒ p ∈ V (I) or p ∈ V (J)

11



A similar argument applies to V (I ∩ J).

Part 2: We have that

p ∈ V

(∑
α

Iα

)
⇐⇒

∑
Iα

Iα ⊆ p ⇐⇒ Iα ⊆ p ∀α ⇐⇒ p ∈
⋂
α

V (Iα)

Part 3: By Proposition 1.2.4, we have that
√
I =

⋂
V (I) and

√
J =

⋂
V (J). The statement

then follows immediately.

Definition 1.3.3. Let R be a ring. We define the Zariski topology on X = SpecR by
declaring the closed sets of X to be the V (I). Moreover, we define the structure sheaf of
X, denoted by OX , to be the sheaf of rings

OX(U) =

 s : U →
⋃̇
p∈U

Rp

∣∣∣∣∣∣
∀ p ∈ U, s(p) ∈ Rp

∃ p ∈ W ⊆ U open s.t ∀ q ∈ W, s(q) =
a

b
∈ Rq


Proposition 1.3.4. Let R be a ring and X = SpecR. Then OX is indeed a sheaf.

Proof. OX is clearly a presheaf with the natural restriction homomorphisms. We just need
to check the sheaf condition. To this end, let U ⊆ X be an open set and U =

⋃
i Ui be an

open cover of U . Suppose that si ∈ OX(Ui) such that si|Ui∩Uj = sj|Ui∩Uj for all i, j. Define
a function

s : U →
⋃̇
p∈U

Rp

p 7→ si(p)

where i is chosen whenever p ∈ Ui. Then this function is well-defined as the si agree on
overlaps. We claim that s is the desired section in the sheaf condition. It’s restriction to Ui
is clearly just si so we must have that s ∈ OX(U) and that such an s is unique.

Proposition 1.3.5. Let R be a ring and X = SpecR. Then

{D(b) = X \ V ((b)) | b ∈ R }

is a basis for the Zariski Topology on X.

Proof. It suffices to show that the D(b) are open in X and that any given any open set
U ⊆ X and a prime x ∈ U , there exists a b ∈ R such that x ∈ D(b) ⊆ U .

Now, fix b ∈ R, it is immediate that D(r) is open as, by definition, D(b) = X \ V ((r))
and X \D(b) = V ((b)) is closed.

Next, fix an open neighbourhood U ⊆ X and a prime p ∈ U . By definition, U = X\V (I)
for some ideal I ⊆ R. Moreover, p does not contain I. Choose any non-zero element
b ∈ I. Then p does not contain (b) so that p /∈ V ((b)) whence p ∈ X\V ((b)) = D(b). By
construction, D(b) ⊆ U thereby proving the proposition.

Theorem 1.3.6. Let R be a ring and X = SpecR. Then

1. (OX)p ∼= Rp as local rings for all p ∈ X.
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2. OX(D(b)) ∼= Rb for all b ∈ R.

3. OX(X) ∼= R.

Proof.

Part 1: Define a ring homomorphism

f : (OX)p → Rp

[U, s] 7→ s(p)

We claim that f is the desired local isomorphism. We must first check that f is well-
defined. Suppose that [U, s] = [V, t]. Then, by the definition of a stalk, there exists an open
neighbourhood p ∈ W ⊆ U ∩ V such that s|W = t|W . It then follows that s(p) = t(p).

We now show that f is injective. Assume that f([U, s]) = s(p) = 0. By definition, s is
given by some fraction a/b on some open neighbourhood p ∈ W ⊆ U . So s(p) = 0 implies
that there exists some c 6∈ p such that ca = 0. It then follows that we have a/b = 0 in
all local rings Rq such that b, c /∈ q. Equivalently, q ∈ D(b) ∩ D(c). Then s is 0 on the
neighbourhood of p given by D(b) ∩D(c) ∩W whence [U, s] = 0 and f is injective.

We next show that f is surjective. Choose a fraction a/b ∈ Rp. Let U = D(b) and
s ∈ OX(U) be given by a/b. Then, clearly, f([U, s]) = a/b as desired.

Finally, we must show that this in fact a local isomorphism. It suffices to show that the
set

m = { [U, s] | f([U, s]) = s(p) ∈ pp }

is the unique maximal ideal of (OX)p. Let I / (OX)p be an ideal not contained in m. We
need to show that all elements of I are invertible. To this end, fix [U, s] ∈ (OX)p. Then
f([U, s]) = s(p) /∈ pp and is thus invertible in Rp. Let s(p)−1 denote its inverse in Rp. Then
since f is a ring isomorphism, f−1(s(p)) is an inverse for [U, s] in (OX)p and we are done.

Part 2: Define a ring homomorphism

g : Rb → OX(D(b))
a

bn
7→
(

sections defined by
a

bn

)
We claim that g is an isomorphism. We first show that it is injective. To this end, suppose
that g(a/bn) = 0. Then for all p ∈ D(b), a/bn = 0 in Rp. For such a p we have that there
exists cp /∈ p such that cpa = 0. Define I = (cp)p∈D(b). Then D(b) ∩ V (I) = ∅. Indeed

p ∈ D(b) =⇒ cp 6∈ p =⇒ I 6⊆ p =⇒ p 6∈ V (I)

Hence V (I) ⊆ V ((b)) whence
√
I ⊇

√
(b). By definition of the radical, we thus have br ∈ I

for some r ∈ N so br =
∑

i dicpi . Multiplying by a we get

abr =
∑
i

diacpi = 0

And so a/bn = 0 in Ab.
We must now show that g is surjective. To this end, choose a section s ∈ OX(D(b)) and

let {Ui }i∈I be an open cover of D(b). Suppose that s|Ui is given by some ai/ei. We may
assume that each Ui = D(di) for some di ∈ R. From this we observe that D(di) ⊆ D(ei)
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and so
√

(di) ⊆
√

(ei). By the definition of the radical, we have dnii = ciei for some ni ∈ N
and ci ∈ R. We may replace

ai
ei

=
ciai
ciei

=
ciai
dnii

Noting that D(di) = D(dnii ) for all ni, we may assume that Ui = D(ei). So then D(b) =⋃
iD(ei) whence

V ((b)) =
⋂
i

V ((ei)) = V

(∑
i

(ei)

)

Again applying the radical identity we have
√

(b) =
√∑

(ei). This implies that bn =∑
finite ljej for some lj ∈ R. Going back through the identities, we may then adjust the

indexing so we have a finite union

D(b) =
⋃

finite

D(ei)

Now by hypothesis, ai/ei and ak/ek define the same section on D(ei)∩D(ej) = D(eiek). By
Part 1, the homomorphism Reiek → OX(D(eiek)) is injective and so ai/ei = ak/ek in Reiek .
By definition of the ring of fractions, there exists an n′ ∈ N such that

(eiek)
n′(aiek − akei) = en

′+1
k en

′

i ai − en
′+1
i en

′

k ak = 0

for all i, k. By equivalence, we may then assume that aiek = akei. From this it follows that

ek

(∑
i

liai

)
=
∑
i

liaiek =
∑
i

liakei = ak
∑
i

liei = akb
n

and so

ak
ek

=
∑
i

liai
bn

Hence s is given by
∑

i liai/b
n on D(b) and therefore g is surjective.

Part 3: This follows directly from Part 2 by taking b = 1.

1.4 Ringed Spaces

Definition 1.4.1. A ringed space is a pair (X,OX) where X is a topological space and
OX is a sheaf of rings called the structure sheaf of X. We say that (X,OX) is a locally
ringed space if (OX)p are local rings for all p ∈ X.

Definition 1.4.2. Let (X,OX) and (Y,OY ) be ringed spaces. A morphism (f, ϕ) :
(X,OX)→ (Y,OY ) consists of

1. a continuous map f : X → Y .

2. a morphism of sheaves ϕ : OY → f∗OX .
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Furthermore, if (X,OX) and (Y,OY ) are locally ringed spaces then ϕ is a morphism of
locally ringed spaces if the induced homomorphism

(OY )q → (OX)p

[V, t] 7→ [f−1V, s]

is a local homomorphism for q = f(p). Finally, an isomorphism of (locally) ringed spaces
is a morphism which has an inverse.

Theorem 1.4.3. Let R and S be rings, (X = Spec(R),OX), (Y = Spec(S),OY ) ringed
spaces and α : R→ S a homomorphism of rings. Then

1. (X,OX) and (Y,OY ) are locally ringed spaces.

2. α induces a morphism (Y,OY )→ (X,OX) of locally ringed spaces.

3. Any morphism of locally ringed spaces (Y,OY ) → (X,OX) is induced by some ring
homomorphism α : R→ S.

Proof.

Part 1: This follows immediately from Theorem 1.3.6.

Part 2: We first define f : Y → X by setting f(p) = α−1(p) for p ∈ Y . It is easy to see
that f is continuous. Indeed, given a closed set V (I), its inverse image under f is simply
V ((αI)) which is again closed.

We now define ϕ. Recall that given p ∈ Y with q = f(p) we have a local homomorphism

αp : Rq → Sp

a

b
7→ α(a)

α(b)

Now, choose s ∈ OX(U) for some open U ⊆ X. Recall that s is a function

s : U →
⋃̇
q∈U

Rq

Define a section t ∈ OX(f−1U) by

t : f−1U →
⋃̇

p∈f−1U

Sp

p 7→ αp(s(f(p)))

If s is locally given by a/b then t is locally given by α(a)/α(b). This gives a morphism of
sheaves

(f, ϕ) : (Y,OY (U))→ (X,OX(U))

as desired. Now, the homomorphism induced on stalks by ϕ is simply αp and so this is
indeed a morphism of locally ringed spaces.

Part 3:
Suppose (f, ϕ) : (Y,OY ) → (X,OX) is a morphism of locally ringed spaces. By Part 3

of Theorem 1.3.6, applying (f, ϕ) to the global section X yields a homomorphism of rings
α : R→ S. We claim that (f, ϕ) is induced by α.
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To show this, fix p ∈ Y and set q = f(p). Consider the commutative diagram

R = OX(X) OY (Y ) = S

Rq = (OX)q (OY )p = Sp

α

β γ

αp

From this we may read off

q = β−1(qq) = β−1(α−1
p (pp)) = α−1(γ−1(pp)) = α−1(p)

whence f = α−1. To see that ϕ is also induced by α, let U ⊆ X be an open set and p ∈ U
with q = f(p). Consider the commutative diagram

OX(U) OY (f−1(U))

(OX)q (OY )p

ϕU

αp

Fix a section s ∈ OX(U). Then this section is determined by all the values s(p) ∈ OY (f−1U).
The commutative diagram then makes it clear that ϕ is determined by α.

2 Schemes

2.1 Definitions

Definition 2.1.1. Let (X,OX) be a locally ringed space. We say that (X,OX) is an affine
scheme if it isomorphic to (X = Spec(R),OX) for some ring R. We say that (X,OX) is a
scheme if for all x ∈ X there exists an open neighbourhood x ∈ U ⊆ X such that (U,OX |U)
is an affine scheme. A morphism of schemes (X,OX) and (Y,OY ) is a morphism between
them as locally ringed spaces. We denote by Sch(X) the category of schemes over X and
their morphisms.

Remark. Henceforth, by an abuse of notation, an (affine) scheme (X,OX) will be written
simply as X. The stalks (OX)x shall be written as OX,x or simply Ox.

Example 2.1.2. Let K be a field. Then X = Spec(K) is a scheme consisting of a single
point (the only prime ideal of a field is the zero ideal). Furthermore, if L/K is a field
extension then Y = Spec(L)→ X = Spec(K) is a morphism of schemes.

Example 2.1.3. Let R be a discrete valuation ring with maximal ideal m. Then Spec(R) =
{ 0,m }. The stalks are given by O0 = R0 = Frac(R) and Om = Rm.

Example 2.1.4. Let X = Spec(Z) = { 0, (2), (3), (5), . . . }. The stalk at x = 0 is simply Q.
If x = (p) for some prime number p then Ox = Z(p). Note that if mp is the maximal ideal of
Z(p) then Z(p)/mp

∼= Fp.
Furthermore, if R is any ring then the characteristic ring homomorphism

Z→ R

n 7→ n · 1R

induces a morphism of schemes Spec(R)→ Spec(Z).
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Definition 2.1.5. Let R be a ring. We define affine n-space over R, denoted AnR, to be

AnR = Spec(R[t1, . . . , tn])

Example 2.1.6 (Classical Algebraic Geometry). Let K be an algebraically closed field and
I /K[t1, . . . , tn] an ideal. Since K[t1, . . . , tn] is Noetherian, we have that I = (f1, . . . , fr) for
some fi ∈ K[t1, . . . , tn]. Consider the set

S = { (a1, . . . , an) | ai ∈ K, fj(a1, . . . , an) = 0 ∀ j }

Then there exists a one-to-one correspondence between S and the set of maximal ideals in
K[t1, . . . , tn] containing I (in other words, ideals of the form (t1−a1, . . . , tn−an)). classical al-
gebraic geometry studies S whereas modern algebraic geometry studies SpecK[t1, . . . , tn]/I.

Definition 2.1.7. Let X be a scheme. We say that X is irreducible if for all non-empty
open sets U, V ⊆ X we have U ∩ V 6= ∅. Equivalently, if X = Y ∪ Z for Y and Z closed
then either X = Y or X = Z.

Definition 2.1.8. Let R be a ring. We say that R is reduced if nil(R) = 0. Furthermore,
if X is a scheme, we say that X is reduced if for all open sets U ⊆ X, OX(U) is reduced.

Definition 2.1.9. Let X be a scheme. We say that X is integral if for all open sets U ⊆ X,
OX(U) is an integral domain.

Proposition 2.1.10. Let X = Spec(R) be an affine scheme for some ring R. Then

1. X is irreducible if and only if nil(R) is a prime ideal of R.

2. X is reduced if and only if R is reduced.

3. X is irreducible and reduced if and only if R is an integral domain.

Proof.

Part 1: We have that X is irreducible if and only if X = V (I)∪V (J) implies that X = V (I)
or X = V (J). Recall that V (I) ∪ V (J) = V (IJ) and that nil(R) is the intersection of all
prime ideals in a ring. From this we see that X is irreducible if and only IJ ⊆ nil(R) implies
that I ⊆ nil(R) or J ⊆ nil(R). But this is exactly what it means for nil(R) to be prime.

Part 2: The forward direction is just by definition so assume that R is reduced. Let
s ∈ OX(U) be nilpotent. Then for all x ∈ U , the image of s in Ox = Rx is nilpotent.
By hypothesis, Rx is reduced so s = 0 in Rx for all x ∈ U . Since OX is a sheaf, it follows
that s = 0 in OX(U) whence OX(U) is reduced.

Part 3: We have that X is irreducible and reduced if and only if nil(R) is prime and
nil(R) = 0. But this is equivalent to R being and integral domain.

Theorem 2.1.11. Let X be a scheme. Then X is integral if and only if it is irreducible
and reduced.

Proof. First suppose that X is integral. Then clearly X is reduced. Now assume that there
exists open sets U, V ⊆ X such that U ∩V = ∅. Then OX(U ∪V ) = OX(U)⊕OX(V ) since
OX is a sheaf. But the direct sum of two non-zero rings can never be an integral domain
which is a contradiction.
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Conversely, suppose that X is irreducible and reduced. We first claim that for all open
sets U ⊆ X and x ∈ U , there exists an open affine neighbourhood x ∈ W ⊆ U .

By the definition of a scheme, there exists an open affine V = Spec(R) ⊆ X such that
x ∈ V . Then there exists b ∈ R such that x ∈ D(b) ⊆ U ∩ V . Now, as schemes, we have
that D(b) ∼= Spec(Rb) so the claim is proved.

Now suppose that s, t ∈ OX(U) such that st = 0 with s 6= 0. We need to show that
t = 0. By the claim, we can cover U by open affine sets U =

⋃
Vi where Vi = Spec(Ri)

for some ring Ri. Then for some i, s|Vi 6= 0. Since X is irreducible and reduced, so is Vi.
Proposition 2.1.10 then implies that Ri is an integral domain and so

st|Vi = s|Vi · t|Vi = 0

implies that t|Vi = 0. We claim that in fact t|Vj = 0 for all j.
Now, X is irreducible whence Vi ∩ Vj 6= ∅ for all j. Since t|Vi∩Vj = 0, we must then have

that t = 0 in Ox for all x ∈ Vi ∩ Vj. Note that Ox ∼= (Rj)x and the natural inclusion

Rj → (Rj)x

a 7→ a

1

is injective. Since the image of t|Vj is 0 under this map, it follows that t|Vj = 0 for all j. But
OU is a sheaf whence t = 0. Hence OX(U) is an integral domain and X is integral.

Definition 2.1.12. Let X be a scheme. We say that η ∈ X is generic if { η } = X.

Proposition 2.1.13. Let X be an integral scheme. Then X has a unique generic point.

Proof. Let U be any affine open set U = Spec(R) for some ring R. We claim that η = 0 /R
is a generic point of U . Let I / R be an ideal. Then V (I) clearly never contains the zero
ideal unless I = 0. Since V (0) = Spec(R), it follows that every non-empty open subset of
U contains η which is exactly what it means for η to be dense in U . Now suppose that η′ is
any other generic point of U . Then, by definition, η′ ∈ V for all non-empty open subsets of
U . Then the only I such that η′ ∈ V (I) is I = 0. Hence η′ is a minimal prime ideal of R.
Since X is integral, so is U when viewed as a scheme whence R is an integral domain. Since
0 is the unique minimal prime ideal of an integral domain, we must have that η′ = 0 = η
and so U has a unique generic point.

Now, X is integral and, in particular, it is irreducible. This is equivalent to every non-
empty open subset of X being dense in X. Since η = 0 is dense in all non-empty open
subsets U when viewed as a scheme, η is thus also dense in X and we are done.

Proposition 2.1.14. Let X be an integral scheme and η its unique generic point. Then Oη
is a field called the function field of X and denoted K(X).

Proof. Let U ⊆ X be any affine open set where U = Spec(R). Then Oη = (OX)η = (OU)η =
R(0) = Frac(R).

Definition 2.1.15. Let X and Y be schemes and f : Y → X a morphism. We say that f
is an open immersion if U := f(Y ) is open in X and f induces an isomorphism of locally
ringed spaces (Y,OY ) → (U,OX |U). An open subscheme of X is any open immersion of
some scheme Y to X.

Definition 2.1.16. Let X and Z be schemes. A closed immersion is a morphism of
schemes g : Z → X such that
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1. g(Z) is closed in X.

2. g induces a homeomorphism Z → g(Z).

3. OX → g∗OZ is a surjection.

A closed subscheme of X is any closed immersion from some scheme Z into X up to the
following equivalence relation. Two closed immersions g : Z → X and g′ : Z ′ → X define
the same closed subscheme if there exists an isomorphism h : Z → Z ′ such that the diagram

Z

Z ′ X

h
g

g′

commutes.

Example 2.1.17. Let X = Spec(R) for some ring R and I / R an ideal. Then R → R/I
gives a closed immersion Spec(R/I)→ Spec(R).

2.2 Schemes Associated to Graded Rings

Definition 2.2.1. Let S be a ring. We say that S is graded if there exist a collection of
rings {Sd }d∈N such that S =

⊕
d∈N Sd and SdSc ⊆ Sd+c. If sd ∈ Sd then we say that sd is

homogeneous of degree d.

Example 2.2.2. C[t1, . . . , tn] is a graded ring.

Definition 2.2.3. Let S =
⊕

d∈N Sn be a graded ring and I / S an ideal. We say that I is
a homogeneous ideal if

I =
⊕
d∈N

I ∩ Sd

Proposition 2.2.4. Let S =
⊕

d∈N be a graded ring and I, J / S homogeneous ideals. Then

I + J, IJ, I ∩ J and
√
I are all homogeneous ideals.

Proof. We have that

I + J =

(⊕
d∈N

I ∩ Sd

)
+

(⊕
d∈N

J ∩ Sd

)
=
⊕
d∈N

(I + J) ∩ Sd

A similar argument shows that IJ and I ∩ J are also homogeneous ideals.
To show that

√
I is homogeneous, choose s ∈

√
I. Then sn ∈ I for some n ∈ N. Without

loss of generality, we may suppose that sn is homogeneous of degree d with sn ∈ Id. Since
I is homogeneous, we must have that s ∈ Id/n. The elements of

√
I are thus homogeneous

and we are done.

Proposition 2.2.5. Let S =
⊕

d∈N Sd be a graded ring and p / S a homogeneous ideal. If
for all homogeneous ideals I, J / S we have that IJ ⊆ p implies I ⊆ p or J ⊆ p then p is
prime.
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Proof. Let a and b be elements (not necessarily homogeneous) such that ab ∈ p. Suppose
that neither a nor b is in p. Let a =

∑
i ai and b =

∑
j bj be their homogeneous expansions.

Since a 6∈ p and the terms in the expansion are eventually 0, there exists a maximum d such
that ad 6∈ p. Similarly, there exists a maximum e such that be 6∈ p.

Since ab ∈ p, all of its components are as well. The (d + e)th component of ab is given
by
∑

i+j=d+e aibj. Each pair (i, j) except (d, e) must satisfy either i > d or j > e. The
maximality of d and e then imply that each aibj ∈ p. This then implies that aibj ∈ p. By
hypothesis, either ai or bj is in p which is a contradiction.

Definition 2.2.6. Let S be a graded ring and p / S a homogeneous prime ideal. We define
the homogeneous localisation of S at p by

S(p) =
{ a
b
∈ Sp

∣∣∣ a, b are homogeneous and have the same degree
}

Similarly, given a homogeneous element of non-zero degree b ∈ S we define

S(b) =
{ a

br
∈ Sb

∣∣∣ a, br are homogeneous and have the same degree
}

Definition 2.2.7. Let S =
⊕

d∈N Sd be a graded ring and S+ =
⊕

d>0 Sd. We define the
homogeneous spectrum of S to be the set

Proj(S) = { p / S | p is homogeneous and S+ 6⊆ p }

Furthermore, for all I / S, define

V+(S) = { p ∈ Proj(S) | I ⊆ p }

Lemma 2.2.8. Let S be a graded ring. Then

1. For all homogeneous ideals I, J / S we have V+(IJ) = V+(I ∩ J) = V+(I) ∪ V+(J).

2. For any family of homogeneous ideals Iα of S we have V+(
∑

α Iα) = ∩αV+(Iα).

Proof. Follows a similar argument to the affine case.

Definition 2.2.9. Let S be a graded ring. We can define a topology on X = Proj(S) called
the Zariski topology by taking the closed sets to be the V+(I) for all I / S. Moreover, we
define the structure sheaf of X, denoted OX to be the sheaf of rings

OX(U) =

 s : U →
⋃̇
p∈U

S(p)

∣∣∣∣∣∣∣∣
∀ p ∈ U,s(p) ∈ S(p)

∃ open p ∈ W ⊆ U such that ∀ q ∈ W,

s(q) =
a

b
∈ S(q) where a, b ∈ S are homogeneous of the same degree


Proposition 2.2.10. Let S be a graded ring and X = Proj(S). Then

{D+(b) = X \ V+((b)) | b ∈ S homogeneous }

is a basis for the Zariski topology on X.

Proof. This is proven in a similar way to the affine case.

Theorem 2.2.11. Let S =
⊕

d∈N Sd be a graded ring and X = Proj(S). Then
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1. (OX)p ∼= S(p) for all p ∈ X.

2. For all homogeneous b ∈ S+ there exists a natural isomorphism of locally ringed spaces
between D+(b) and Spec(S(b)).

3. (X,OX) is a scheme.

Proof.

Part 1: Similar argument to the affine case.

Part 2: First denote Ub := D+(b) and Y := Spec(S(b)). We shall construct an isomorphism
of locally ringed spaces

(f, ϕ) : (Ub,OX |Ub)→ (Y,OY )

Note that we have natural homomorphisms of rings S → Sb and S(b) ↪→ Sb. We use these
to define f as follows:

f : Ub → Y

p 7→ pb ∩ S(b)

We first show that f is injective. Suppose that f(p) = f(q) for some p, q ∈ Ub. We need
to show that p = q. To this end, fix x ∈ p. Let x =

∑
i xi be its homogeneous expansion.

Since q is homogeneous, it suffices to show that each xi ∈ q. By hypothesis, we have that

pb ∩ S(b) = qb ∩ S(b)

Now, we can always find n, r ∈ N such that deg(xni ) = deg(br) so for such n and r, we have
that xni /b

r ∈ pb∩S(b). But then xni /b
r ∈ qb∩S(b). This means that xni ∈ q. Since q is prime,

we thus have that xi ∈ q and so p ⊆ q. A similar argument gives us the reverse inclusion
whence f is injective.

We next show that f is surjective. Fix q ∈ Y = Spec(S(b)). We need to exhibit
p ∈ Ub = D+(b) such that f(p) = q. Define

Im =

{
a ∈ Sm

∣∣∣∣ adeg(b)

bm
∈ q

}
We claim that I =

⊕
m∈N Im is the desired element of Ub. We first show that I is an ideal.

Let r, s ∈ Im. Then clearly,

(r + s)2 deg(b)

b2m
∈ q

Since q is prime, it then follows that

(r + s)deg(b)

bm
∈ q

And so Im is an abelian group. It then follows immediately that I is a homogeneous ideal.
To see that it is a prime ideal, suppose that rs ∈ I for some homogeneous elements r, s ∈ S.
Then

(rs)deg(b)

bdeg(rs)
=

rdeg(b)sdeg b

bdeg(r)bdeg(s)
=
rdeg(b)

bdeg(r)
· s

deg(b)

bdeg(s)
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From this we see that either r ∈ I or s ∈ I so I is prime. Now clearly, b /∈ I so, indeed,
I ∈ D+(b). It then follows immediately that f(I) = q thereby proving that f is bijective.

We now show that f is a homeomorphism. Note that D+(b) ∩ V+(I) for homogeneous
ideals I / S are the closed sets of D+(b). Then

f(D+(b) ∩ V+(I)) = V (Ib ∩ S(b))

The other direction is also clear so f is a homeomorphism.
We next show that there exists an isomorphism ϕ : OUb(U) → OY (f(U)) for all open

sets U ⊆ Ub. Observe that by Part 1, we have isomorphisms

(OX)p ∼= S(p)
∼= (S(b))f(p)

∼= (OY )f(p)

where the middle isomorphism is given by

a

c
7→ a

1
/
c

1

This then induces an isomorphism on the level of sections and we are done.

Part 3: This follows from Part 1 and Part 2. Note that the condition S+ 6⊆ p ensures that
the open sets D+(b) cover X = Proj(S).

Example 2.2.12. Let R be a ring and S = R[t0, . . . , tn]. Then S is a graded ring with
homogeneous components Sd consisting of all homogeneous polynomials of degree d. We
define n-projective space over R to be

PnR = Proj(S)

The open sets D+(t0), . . . , D+(tn) cover PnR. By the above Theorem, we have that

D+(ti) ∼= Spec(S(ti))
∼= R

[
t0
ti
, . . . ,

tn
ti

]
∼= Spec(AnR)

2.3 Fibred Products

Proposition 2.3.1. Let X be a topological space. Then Sch(X) has pullbacks (fibred prod-
ucts). In other words, given a commutative diagram

Z Y

W S

g

f

of schemes over X, there exists a unique scheme, denoted W ×S Y such that we have a
commutative diagram

Z

W ×S Y X

Y Z

g

f
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and a unique morphism of schemes Z → WXSY . Categorically, W ×S Y is universal
amongst all schemes Z that complete the above diagram to a commutative diagram.

Proof. First suppose that all schemes involved are affine so that S = Spec(A), W = Spec(B)
and Y = Spec(C) for some rings A,B and C. Let Z = Spec(D) for some ring D. A
commutative diagram

Z Y

W S

g

f

yields a commutative diagram of rings

D C

B A

by reversing the direction of the arrows. By the universal property of tensor products, there
exists a unique homomorphism of A-modules B ⊗A C → D such that the diagram

D C

B ⊗A C

B A

commutes. Define X ×S Y = Spec(B ⊗A C). Then we get a commutative diagram

Z

W ×S Y X

Y Z

g

f

as desired. The proof of the general case is omitted.

Definition 2.3.2. Let X and Y be schemes and f : X → Y be morphisms. Given y ∈ Y ,
let my be the maximal ideal of Oy and k(y) = Oy/my the residue field of y in Y . We define
the fibre of f over y to be

Xy = Spec(k(y))×Y X

Furthermore, if Y is integral and η is the generic point of Y then we say that Xη is a generic
fibre of f .

Example 2.3.3. Let R = C[t1, t2, t3]/(t2t3 − t1) and X = Spec(R). The homomorphism of
rings

C[u]→ R

u 7→ [t3]
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induces a morphism of schemes X → Y = Spec(C[u]) = A1
C. Let y = (u − a) / C[u]. We

have that

k(y) = Oy/my
∼=

C[u](u−a)

(u− a)(u−a)

∼= C[u](u−a)
∼= C

The fibre Xy is given by

Xy = Spec

(
C[u]

(u− a)
⊗C[u] R

)
∼= Spec

(
R

(u− a)R

)
∼=
C[t1, t2]

(at2 − t21)

In particular, if a = 0, Xy = Spec
(
C[t1,t2]

(t21)

)
which is not reduced.

2.4 OX-modules

Definition 2.4.1. Let (X,OX) be a ringed space and F a sheaf of modules. We say that
F is an OX-module if for all open sets U ⊆ X, F(U) is an OX(U)-module and for all
inclusions of open sets V ⊆ U and s ∈ OX(U),m ∈ F(U) we have (sm)|V = s|V ·m|V .

Definition 2.4.2. Let (X,OX) be a ringed space and F ,G be OX-modules. A morphism
of OX-modules ϕ : F → G is a morphism of sheaves such that for all open sets U ⊆
X,F(U)→ G(U) is a homomorphism of OX(U)-modules.

Remark.

• If ϕ : F → G is a morphism of OX-modules then kerϕ and imϕ are OX-modules.

• If Fi is a family of OX-modules then
⊕

iFi is an OX-module defined to be the sheafi-
fication of the presheaf given by

⊕
Fi(U).

• If F and G are OX-modules then F ⊗OX G is an OX-module defined to be the sheafi-
fication of the presheaf given by F(U)⊗OX(U) G(U).

• If f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces and F is an OX-module then
f∗F is an OY -module.

Definition 2.4.3. Let X = Spec(R) be an affine scheme and M an R-module. We define

the OX-module M̃ by

M̃(U) =

 s : U →
⋃̇
p∈U

Mp

∣∣∣∣∣∣∣∣
∀ p ∈ U,s(p) ∈Mp

∃ open p ∈ W ⊆U such that ∀ q ∈ W,

s(q) =
m

a
∈Mq where m ∈M,a ∈ R


Theorem 2.4.4. Let X = Spec(R) be an affine scheme and M an R-module. Then

1. M̃ is indeed an OX-module.

2. (M̃)p ∼= Mp for all p ∈ X.
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3. M̃(D(b)) ∼= Mb.

4. M̃(X) ∼= M .

Proof. All proved in the same way as for the case where M = R.

Remark. Let X = Spec(R). If M → N is a homomorphism of R-modules then we get a

morphism of OX-modules M̃ → Ñ . So if

0 K M N 0

is a complex of R-modules we then have a complex of sheaves

0 K̃ M̃ Ñ 0

Where the first complex is exact if and only if the second complex is exact. Indeed, the
complex of R-modules is exact if and only if

0 Kp Mp Np 0

is exact for all p ∈ X. This is exact if and only if

0 K̃p M̃p Ñp 0

is exact for all p ∈ X. This is exact if and only if the original complex of sheaves is exact.

Definition 2.4.5. Let f : X → Y be a map of topological spaces and G a sheaf on Y .
We define the inverse image of G under f , denoted f−1G, to be the sheafification of the
presheaf given by

U 7→ lim−→
V⊇F (U)

G(V )

where U ⊆ X is open.

Remark. Elements of the direct limit can be represented by equivalence classes of pairs
[V, t] where f(U) ⊆ V and t ∈ G(V ) and the equivalence relation is given by (V, t) ∼ (V ′, t)
if and only if there exists an open f(U) ⊆ W ⊆ V ∩ V ′ such that t|W = t′|W .

Definition 2.4.6. Let f : X → Y be a morphism of ringed spaces and G an OY -module.
We define the pullback of G under f , denoted f ∗G, to be

f ∗G = OX ⊗f−1OY f
−1G

Theorem 2.4.7. Let α : R → S be a ring homomorphism and f : X = Spec(S) → Y =
Spec(R) the induced morphism of schemes.

1. If M and N are R-modules then

M̃ ⊗OY Ñ ∼= M ⊗R N
:

2. If {Mi } is a family of R-modules then

⊕
M̃i =

⊕
Mi

:
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3. If L is an S-module then f∗L̃ ∼= R̃L where RL is L considered as an R-module via α.

4. If M is an R-module then f ∗M̃ ∼= S ⊗RM
:

.

Proof. We give the proof of Part 1. Part 2 is analogous and the others are omitted.
Let F be the presheaf given by F(U) = M̃(U) ⊗OY (U) Ñ(U). We shall construct an

isomorphism of sheaves ϕ : F →M ⊗R N
:

. Fix an open subset U ⊆ X and choose s ∈ M̃(U)

and t ∈ Ñ(U). Define

r : U →
⋃̇
p∈U

(M ⊗R N)p =
⋃̇
p∈U

Mp ⊗R Np

p 7→ s(p)⊗ t(p)

If s is locally given by m/a and t is locally given by n/b then r is locally given by (m⊗n)/ab.
Now, the mapping (s, t)→ r is bilinear and hence induces a homomorphism of R-modules

ϕU : F(U)→M ⊗R N
:

(U)

This then induces a morphism of presheaves ϕ : F →M ⊗R N
:

which in turn gives rise to a

morphism of sheaves ϕ+ : F+ →M ⊗R N
:

.
Given p ∈ X, we have that

ϕ+
p = ϕp : Fp = Mp ⊗Rp Np →M ⊗R N

:
p = (M ⊗R N)p

is an isomorphism at the level of stalks. This then implies that ϕ is an isomorphism and we
are done.

2.5 Quasi-coherent sheaves

Definition 2.5.1. Let X be a scheme and F an OX-module. We say that F is quasi-
coherent if for all open affine U = Spec(R) ⊆ X, F|U = M̃ for some R-module M .
Furthermore, we say that F is coherent if M can be chosen to be finitely generated over
R.

Example 2.5.2. Let X be a scheme. Then OX is coherent. Indeed, for all open affine sets
U = Spec(R) we have OX |U = R̃.

Example 2.5.3. Let R be a discrete valuation ring and set X = Spec(R) = { 0,m }. Define
an OX-module G of X by setting F({ 0 }) = Frac(R) and F(X) = 0. Then G is not
quasi-coherent. Indeed, if U ⊆ X is open affine containing m then U = X. If G were to be
quasi-coherent, we would have that G = M̃ for some R-module M . But then M = F(X) = 0
which is a contradiction.

Lemma 2.5.4. Let X = Spec(R) be an affine scheme and F an OX-module. Let M =

F(X). Then there exists a natural morphism of OX-modules f : M̃ → F .

Proof. For all a ∈ R, define a homomorphism

Ma → F(D(a))

m

ar
→ 1

ar
·m|D(a)

This induces a morphism of OX-modules M̃ → F . Now, each open set U ⊆ X is covered
by open sets of the form D(ai). For each section s ∈ M̃(U), consider images of s|D(ai) and
glue them together to get a section in F(U) and call it image of s.
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Corollary 2.5.5. Let X = Spec(R) be an affine scheme and M an R-module. If a ∈ R
then

M̃ |D(a)
∼= M̃a

as OX-modules.

Proof. By Lemma 2.5.4, we have a morphism of OX-modules

ϕ : M̃a → M̃ |D(a)

Now, for all p ∈ D(a) we have that ϕp : (M̃)a)p → (M̃ |D(a))p is an isomorphism. This
implies that ϕ itself is an isomorphism.

Definition 2.5.6. Let X be a scheme. We say that X is Noetherian if X can be covered
by finitely many open affine subschemes U1, . . . , Ur such that for all i, Ui = Spec(Ri) for
some Noetherian Ri.

Theorem 2.5.7. Let X be a scheme and F a quasi-coherent OX-module. If U = Spec(R) ⊆
X is open affine then F|U ∼= M̃ for some R-module M . Furthermore, if X is Noetherian
and F is coherent, M can be chosen to be finitely generated.

Proof. Fix an open affine set U = Spec(R) ⊆ X. By definition, for all x ∈ U , there exists

an open affine neighbourhood of X, V = Spec(B) such that F|V ∼= Ñ for some B-module
N . We can always find a b ∈ B such that x ∈ DV (b) where DV (b) is understood as taking

the open set D(b) with respect to V . By the previous corollary, we have that F|D(b)
∼= Ñb

so we may assume that V ⊆ U . This allows us to replace X with U and so we can just
suppose that X = Spec(R) is affine.

Write X =
⋃
D(ai) as a finite union such that F|D(ai)

∼= M̃i for some Rai-module
Mi. Now, denote fi : D(ai) ↪→ X, fij : D(aiaj) ↪→ X,G =

⊕
i(fi)∗F|D(ai) and H =⊕

i,j(fij)∗F|D(aiaj). Consider the sequence of sheaves

0 F G Hϕ ψ

where ϕU is the homomorphism given by s 7→ (s|U∩D(ai))i and ψU is the homomorphism
given by (si) 7→ (si|U∩D(aiaj) − sj|U∩D(aiaj))i,j. Then the exactness of this sequence follows
from the fact that F is a sheaf.

Note that FD(ai)
∼= M̃i and F|D(aiaj)

∼= M̃i,j for some Aaiaj -module Mij. Moreover,

(fi)∗M̃i = RM̃i and (fij)∗M̃ij = RM̃ij. The exact sequence is thus

0 F
⊕

i R̃Mi

⊕
i,j R̃Mi,j

ϕ ψ

Taking global sections of the exact sequence, we thus have a second exact sequence

0 F(X)
⊕

i RMi

⊕
i,j RMi,j

ϕX

Taking ∼, we then get an exact sequence

0 F̃(X)
⊕

i R̃Mi

⊕
i,j R̃Mi,j

ϕX

Hence F ∼= kerϕ ∼= F̃ and we are done. The statement for coherent OX-modules on
Noetherian schemes follows by the same argumentation.
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Theorem 2.5.8. Let X be a scheme and ϕ : F → G be a morphism of quasi-coherent
OX-modules. Then kerϕ and imϕ are quasi-coherent. Furthermore, if X is Noetherian and
F and G are coherent then kerϕ and imϕ are coherent.

Proof. Let U = Spec(R) ⊆ X be an open affine set. By Theorem 2.5.7 F|U ∼= M̃ and

G|U ∼= Ñ for some R-modules M and N . Then ϕ induces a homomorphism of R-modules
β : M = F(U)→ N = G(U). Let K = ker β. We have an exact sequence

0 K M N
ϕ

Passing to ∼, we get an exact sequence

0 K̃ M̃ Ñ
ϕ|U

And so (kerϕ)|U ∼= K̃ and kerϕ is quasi-coherent. A similar argument proves the result for
imϕ and the Noetherian case.

Theorem 2.5.9. Let f : X → Y be a morphism of schemes, F an OX-module and G an
OY -module. We have that

1. if G is quasi-coherent then f ∗G is quasi-coherent.

2. if G is coherent then f ∗G is coherent.

3. if F is quasi-coherent and

• for all y ∈ Y there exists an open affine neighbourhood of y W ⊆ Y such that
f−1W =

⋃n
i=1 Ui for some open affine Ui.

• for all i, j, Ui ∩ Uj =
⋃m
k=1 Ui,j,k for some open affine Ui,j,k.

then f∗F is quasi-coherent.

Proof.

Part 1: Since quasi-coherency is a local property, we may assume that Y is affine. Then G
is given by some R-module M . If U = Spec(B) ⊆ X is open affine, Theorem 2.4.7 implies
that

f ∗G|U ∼= M ⊗R B
:

which is a B-module and so f ∗G is quasi-coherent.

Part 2: We follow the same argumentation as above. Since f ∗G is coherent, M is finitely
generated over R. Hence M ⊗R B is finitely generated over B and f ∗G is coherent.

Part 3: As usual, we may assume that Y is affine. Let fi : Ui ↪→ X, fi,j,k : Ui,j,k ↪→ X,G =⊕n
i=1(fi)∗(F|Ui) and H =

⊕
i,j,k(fi,j,k)∗(F|Ui,j,k). We then have a sequence of sheaves

0 F G Hϕ ψ

where ϕU is given by s 7→ (s|Ui)i and ψU is given by (si)i 7→ (si|Ui,j,k − sj|Ui,j,k). Then this
sequence is exact since F is a sheaf. Taking pushforwards yields an exact sequence

0 f∗F f∗G f∗H
ϕ ψ
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Note that

f∗G =
⊕
i

(f∗)(fi)∗(F|Ui)

and similarly for f∗H. This implies that both f∗G and f∗H are quasi-coherent as they are
both given by modules as a result of Theorem 2.4.7. f∗F is thus the kernel of a morphism of
quasi-coherent OX-modules whence Theorem 2.5.8 implies that f∗F is quasi-coherent.

Definition 2.5.10. Let X be a scheme. An ideal sheaf I of X is a subsheaf I ⊆ OX .

Theorem 2.5.11. Let X be a scheme. Then there is a one-to-one correspondence between
the quasi-coherent ideal sheaves of X and the closed subschemes of X. Moreover, if X is
Noetherian then the same is true for coherent ideal sheaves.

Proof. Let Y be a closed subscheme of X and let f : Y → X be a representative closed
immersion of Y . By definition, we have that f maps Y homeomorphically onto a closed
subset of X and that the corresponding morphism of sheaves ϕ : OX → f∗OY is a surjection.
Let I = kerϕ. Then I is clearly an ideal sheaf. We claim that I is in fact quasi-coherent.
Now, OX is itself quasi-coherent so by Theorem 2.5.9, it suffices to show that f∗OY is
quasi-coherent.

Assume that X = Spec(R) is affine. Let {Ui } be an open affine covering of Y and
choose open affine Wi ⊆ X such that Ui = Y ∩Wi where Y is identified with a closed subset
of X via f . We can cover X and, in particular, each Wi, by open affine sets of the form
D(b) so that we have a family of elements { bα } such that for all α either D(bα) ⊆ X\Y
or D(bα) ⊆ Wi for some i. Since X =

⋃
αD(bα), we have that

∑
(bα) = R. Indeed, if

this weren’t the case then
∑

(bα) would be contained in some maximal ideal of R which is
prime and thus not contained in any of the D(bα).

∑
(bα) is thus finitely generated as an

ideal and we may assume that there are only finitely many of the bα, say b1, . . . , bn. Now,
for all α, f−1D(bα) is an open affine subscheme of some Ui and thus of Y . Furthermore,
f−1D(bα) ∩ f−1D(bβ) = f−1D(bαbβ) and so the conditions of Part 3 of Theorem 2.5.9 are
satisfied whence f∗OY is quasi-coherent.

Conversely, let I ⊆ OX be a quasi-coherent ideal sheaf. For all open affine sets U =
Spec(R), we have that I|U = Ĩ for some ideal I / R. Indeed, the R-modules contained
in R are exactly the ideals of R. We shall construct a corresponding closed subscheme of
X locally. Given an open affine set U ⊆ X such that I|U = Ĩ, define YU = VU(I) :=
{ p ∈ V (I) | p ∈ U }. Let Y be the union of all such YU ; this set shall be the topological
structure of the closed subscheme. We must first check that Y is well-defined - it is not yet
clear that on U ∩ U ′ this construction is independent of working with either U or U ′. In
other words, given open affine sets U = Spec(R), U ′ = Spec(R′) ⊆ X, we must check that
YU ∩ U ′ = YU ′ ∩ U . To this end, choose p ∈ YU ∩ U ′. Since U ∩ U ′ is again affine, there
exists some b′ ∈ R′ such that p ∈ DU ′(b

′) ⊆ U . Now, OU ′(DU ′(b
′)) = R′b′ and OU(U) = R

so we get a homomorphism of rings θ : R→ R′b′ . On the other hand, we have the canonical
homomorphism R′ → R′b′ . Then 〈θ(I)〉 = I ′b′ . Hence if I ⊆ p then I ′b′ ⊆ p whence I ⊆ p so
that p ∈ YU ′ ∩ U . By symmetry, it then follows that YU ∩ U ′ = YU ′ ∩ U for all affine sets
U,U ′ ⊆ X.

Let G denote the sheafification of the presheaf given by U 7→ OX(U)/I(U). Since Y ⊆ X
is a closed subspace, it follows that G|X\Y = 0. Hence G = f∗OY for some sheaf OY where
f : Y ↪→ X is the inclusion.

In particular, OY is given on open sets W ⊆ Y by writing Y = U ∩ X for some open
set U of X and setting OY = G(U). This is well-defined since G|X\Y = 0. Moreover, let
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x ∈ Y ⊆ X. Choose an affine set U ⊆ X so that U = SpecR and I(U) = I / R. Then
(Y ∩U,OY ∩U) = Spec(R/I) so that Y is a scheme. Hence by construction we have an exact
sequence

0 I OX f∗OY 0

which implies that f : Y ↪→ X is a closed immersion and so Y is a closed subscheme.

2.6 Sheaves Associated to Graded Modules

Definition 2.6.1. Let S =
⊕

d≥0 Sd be a graded ring and M an S-module. We say that M
is graded if there exist a family of S-submodules of M {Md }d∈Z such that

M =
⊕
d∈Z

Md

and Sd ·Me ⊆Md+e.

Definition 2.6.2. Let X = Proj(S) be a projective scheme and M a graded S-module. We

define the OX-module M̃ by

M̃(U) =

 s : U →
⋃̇
p∈U

Mp

∣∣∣∣∣∣∣∣∣∣

∀ p ∈ U,s(p) ∈Mp

∃ open p ∈ W ⊆U such that ∀ q ∈ W,

s(q) =
m

a
∈Mq where m ∈M,a ∈ R

are homogeneous of the same degree


Remark. Let X = Proj(S) be a projective scheme. Then OX ∼= S̃.

Theorem 2.6.3. Let X = Proj(S) be a projective scheme. Then

1. (M̃)p ∼= M(p) for all p ∈ X.

2. M̃ |D+(b)
∼= M̃(b) considered as a sheaf on Spec(S(b)) for all homogeneous b ∈ S+.

3. M̃ is quasi-coherent.

Proof. The proof for Part 1 and Part 2 are the same as for the case of M = S. Part 3 is an
immediate consequence of Part 2 since the open sets D+(b) are a basis for X.

Definition 2.6.4. Let S =
⊕

d≥0 Sd be a graded ring and M =
⊕

d∈ZMd a graded S-
module. Given n ∈ Z, let M(n) be the graded S-module whose deg d piece is Md+n.
Moreover, if X = Proj(S) is a projective scheme and F an OX-module, we define

OX(n) = S̃(n)

F(n) = F ⊗OX OX(n)

Definition 2.6.5. Let (X,OX) be a ringed space. An OX module L is said to be invertible
if for all x ∈ X there exists an open set x ∈ U such that L|U ∼= OU .

Theorem 2.6.6. S =
⊕

d≥0 Sd be a graded ring which is generated over S0 (as an S0-algebra)
by elements in S1 and M =

⊕
d∈ZMd, N =

⊕
d∈ZNd a graded S-modules. Then

1. OX(n) is invertible for all n ∈ Z.
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2. M̃ ⊗OX Ñ = M ⊗S N
:

.

3. M̃(n) ∼= M̃(n).

4. OX(m)⊗OX OX(n) ∼= OX(m+ n) for all m,n ∈ Z.

Proof.

Part 1: Since S is generated over S0 by S1, sets of the form D+(b) with b ∈ S1 cover X.
Hence, given b ∈ S1, it suffices to show that OD+(b)(n) is invertible for all n ∈ Z.

To this end, fix b ∈ S1 and n ∈ Z. We have

OX |D+(b) = S̃(n)|D+(b)
∼= S(n)(b)

:

Now, we have an isomorphism

S(n)(b) → S(b)

a

br
7→ a

br+n

So that

OX(n)|D+(b)
∼= S(b)
: ∼= OD+(b)

Part 2: We construct an isomorphism of OX-modules

ϕ : M̃ ⊗OX Ñ →M ⊗S N
:

Since S is generated over S0 as an S0-algebra by elements of S1, it suffices to define ϕ on
open sets D+(b) for b ∈ S1. Observe that we have

(M̃ ⊗OX Ñ)(D+(b)) ∼= (M̃ ⊗OX Ñ)|D+(b)(D+(b))

= (M(b)
: ⊗D+(b) N(b)

:
)(D+(b))

∼= M(b) ⊗S(b)
N(b)

Moreover, we have

M ⊗S N
:

(D+(b)) ∼= (M ⊗S N)(b)

Now note that we have a canonical isomorphism

M(b) ⊗S(b)
N(b) → (M ⊗S N)(b)

m

bn
⊗ n

bn′
7→ m⊗ n

bn+n′

since the tensor product commutes with localisation. We can thus define ϕD+(b) to be this
isomorphism and we are done.

Part 3: By Part 2 we have

M̃(n) = M̃ ⊗OX OX(n)

= M̃ ⊗OX S̃(n)

∼= M ⊗S S(n)
:

31



Now note that we have an isomorphism

M ⊗S S(n)→M(n)

m⊗ a 7→ am

so that

M̃(n) ∼= M ⊗S S(n)
: ∼= M(n)

:

Part 4: By Part 2 we have

OX(m)⊗OX OX(n) = S(m)
:

⊗OX S(n)
: ∼= S(m)⊗S S(n)
:

Now note that we have an isomorphism

S(m)⊗ S(n)→ S(m+ n)

a⊗ b 7→ ab

so that

OX(m)⊗OX OX(n) ∼= S(m)⊗S S(n)
: ∼= S(m+ n)

:

Lemma 2.6.7. Let X = Proj(T ) and Y = Proj(S) be projective schemes and α : S → T a
homomorphism of graded rings. Then α induces a morphism of schemes f : U → Y where

U = { p ∈ Proj(T ) | α−1(p) ∈ Proj(S) }

Moreover, if α is surjective then this morphism in fact a closed immersion f : X → Y .

Proof. Let S =
⊕

d≥0 Sd and T =
⊕

d≥0 Td and define

f : U → Y

q 7→ α−1(q)

which is well-defined since α preserves degrees. To show that this map is continuous, it
suffices to show that f−1(D+(b)) is open for all homogeneous b ∈ S. But

f−1(D+(b)) = (α−1)−1(D+(b)) = U ∩D+(α(b))

which is clearly open. We must now define a morphism of sheaves ϕ : OY → f∗OU . To this
end, we must provide a homomorphism of rings ϕV : OY (V )→ (f∗OU)(V ) = OU(f−1V ) for
each open set V ⊆ Y . Once again, it suffices to provide a homomorphism of rings

ϕD+(b) : OY (D+(b))→ OU(f−1(D+(b))) = OU(U ∩D+(α(b))) = OX(U ∩D+(α(b)))

for each homogeneous b ∈ S. Observe that we have a natural homomorphism of rings

OY (D+(b)) = S(b) → T(α(b)) = OX(D+(α(b)))

induced by α. Composing this homomorphism with the restriction to U provides us with
the desired homomorpism. To show that it is indeed a morphism of sheaves, we need to
show that the diagram
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OY (V ) OY (W )

(f∗OU)(V ) (f∗OU)(W )

ϕV ϕV

commutes. But this is clear by construction. If α is surjective then U = X and we get a
morphism of schemes f : X → Y . Letting I = kerα we then have an exact sequence

0 I S T ∼= S�I 0

which yields an exact sequence of sheaves

0 Ĩ S̃ T̃ 0

with Ĩ an ideal sheaf of OY = S̃. We thus have a closed immersion f : X → Y and so X is
a closed subscheme of Y .

Theorem 2.6.8. Let S =
⊕

d≥0 Sd and T =
⊕

d≥0 Td such that S is generated as an S0-
algebra by S1. Let X = Proj(S) and Y = Proj(T ) be the corresponding projective schemes
and suppose we are given a surjective ring homomorphism α : S → T with f : Y → X the
corresponding morphism of schemes.

1. If L is a graded S-module then f ∗L̃ ∼= L⊗S T
:

.

2. If K is a graded T -module then f∗K̃ ∼= SK
:

where SK is K considered as a graded
S-module via α.

In particular, we have f ∗OX(n) ∼= OY (n) and f∗OY (n) ∼= (f∗OY )(n) ∼= (f∗OY )⊗OX OX(n).

Proof. We shall construct a morphism of OX-modules ψ : f ∗L̃ → L⊗S T
:

. It suffices to
construct an isomorphism on open sets of the form D+(c) ⊆ Y where c ∈ T1. Let b ∈ S1 be
such that α(b) = c. Expanding definitions, we see that

f ∗(L̃(D+(c))) = f ∗(L̃|D+(b))(D+(c))

= f ∗(L(b)
:

)(D+(c))

= L(b) ⊗S(b)
T(c)

:
(D+(c)))

∼= L(b) ⊗S(b)
T(c)

On the other hand, we have

L⊗S T
:

(D+(c)) = (L⊗S T )(c)

Now, we have an isomorphism

L(b) ⊗S(b)
T(c) → (L⊗S T )(c)

l

br
⊗ t

cr′
7→ l ⊗ t

cr+r′

so we have an isomorphism ψD+(c) : (f ∗L̃)(D+(c)) → L⊗S T
:

(D+(c)) which induces an
isomorphism ψV for all open sets V ⊆ Y and so an isomorphism of OX-modules ψ. A

similar argument proves that f∗K̃ ∼= SK
:

. Finally,

f ∗OX(n) ∼= f ∗S(n)
: ∼= S(n)⊗S T
:

= T (n)
:

= OY (n)
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via the isomorphism

S(n)⊗S T → T (n)

a⊗ t 7→ at

and

f∗OY (n) ∼= f∗T (n)
: ∼= ST (n)

: ∼= ST ⊗S S(n)
: ∼= f∗OX ⊗OX OX(n)

via the isomorphism

ST ⊗S S(n)→ ST (n)

t⊗ a 7→ at

3 Divisors and Differentials

3.1 Invertible Sheaves and Cartier Divisors

Definition 3.1.1. Let (X,OX) be a ringed space. We say that an OX-module F is locally
free of rank n if for all x ∈ X there exists an open x ∈ U ⊆ X such that

F|U ∼=
n⊕
i=1

OU

Note that if n = 1 then this is just the definition of an invertible OX-module.

Definition 3.1.2. Let (X,OX) be a ringed space and F ,G OX-modules. We define an
OX-module HomOX (F ,G) whose sections are given by

HomOX (F ,G)(U) = {ϕ : F | U → G | U | ϕ is a morphism of OX-modules }

Proposition 3.1.3. Let (X,OX) be a ringed space and F ,G OX-modules. Then HomOX (F ,G)
is indeed an OX-module.

Proof. We must first show that H = HomOX (F ,G) is a sheaf of abelian groups. Indeed, fix
an open set U ⊆ X. We define an abelian group structure on H(U) as follows. Given two
morphisms ϕ : F|U → G|U and ψ : F|U → G|U we define

(ϕ+ ψ)|V = ϕ|V + ψ|V

for all open sets V ⊆ U . This is a well-defined morphism (ϕ + ψ) : F → G since ϕ
and ψ are morphisms of sheaves. The identity morphism e : F|U → G|U is given by the
trivial morphism eV : F|U(V ) → G|U(V ). Given a morphism ϕ : F|U → G|U , its inverse
ϕ−1 : F|U → G|U is given pointwise by

ϕ−1
V : F|U(V )→ G|U(V )

s 7→ ϕV (s)−1

Hence H(U) is indeed an abelian group for all open sets U ⊆ V . Now, given open sets
U ⊆ V ⊆, we define the restriction morphisms |V by sending a section ϕ : F|U → F|U to
ϕ|V ∈ HomOX (F|V ,G|)V ). H is thus a presheaf of abelian groups.
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We next verify that H is a sheaf. To this end, fix an open subset U ⊆ X and an open
covering U =

⋃
i Ui. Let ϕi ∈ H(Ui) be sections such that ϕi|Ui∩Uj = ϕj|Ui∩Uj . We need to

show that there exists a unique ϕ ∈ H(U) such that ϕ|Ui = ϕi. Observe that, given an open
subset V ⊆ U , Ai = V ∩ Ui cover V . Now fix a section s ∈ F|U(V ) and denote si = s|Ai .
For each i we have a morphism

ϕi|Ai : F|U(Ai)→ G|U(Ai)

si 7→ ti

By the compatibility of ϕ on overlaps, the ti are also compatible on overlaps. Since G|U is
a sheaf, there exists a unique t ∈ G|U(V ) such that t|Ai = ti for each i. We can then define

ϕV : F|U(V )→ G|U(V )

s 7→ t

Now, by construction, ϕ|Ui = ϕi and so ϕ is the desired section ϕ ∈ H(U). Hence H is a
sheaf of abelian groups.

It remains to show that H is an OX-module. To this end we must show that, for all
open subsets U ⊆ X, H(U) is an OX(U)-module. As we have shown, it is an abelian group
so we just need to endow it with a OX(U)-module strucutre. Fix a section ϕ : F|U → G|U
and an element r ∈ OX(U). Define r · ϕ to be the morphism that is given pointwise by

(r · ϕ)V : F|U(V )→ G|U(V )

s 7→ r|V · ϕ(s)

To verify that this indeed gives us an OX(U)-module structure, fix φ, ψ ∈ H(U) and a
section s ∈ F |U(V ). Then

(r · (ϕ+ ψ))|V (s) = r|V · (ϕ+ ψ)(s) = r|V · (ϕ(s) + ψ(s)) = r|V · ϕ(s) + r|V ψ(s)

= (r · ϕ)|V + (r · ψ)|V

The other module axioms follow similarly.

Lemma 3.1.4. Let (X,OX) be a ringed space and L an invertible OX-module. Then
HomOX (L,OX) is also an invertible OX-module.

Proof. Fix x ∈ X. We need to exhibit an open neighbourhood x ∈ W ⊆ X such that
HomOX (L,OX)|W ∼= OW . Since L is invertible, there exists an open neighbourhood x ∈
W ⊆ X such that L|W ∼= OW . Then

HomOX (L,OX)|W = HomOW (L|W ,OW ) ∼= HomOW (OW ,OW )−OW

so W is a suitable choice of neighbourhood.

Theorem 3.1.5. Let (X,OX) be a ringed space. Then the set of invertible sheaves (up to
isomorphism) on X is an abelian group called the Picard group of X and denoted Pic(X).

Proof. We define the group operation on Pic(X) to be the tensor product of OX-modules
which is clearly a commutative binary operation. We first check that, given L,M∈ Pic(X)
we have L ⊗OX M ∈ Pic(X). Indeed for all x ∈ X there exists an open neighbourhood
x ∈ U ⊆ X such that L|U = OU and an open neighbourhood x ∈ V ⊆ X such that
M|V = OV . Let W = U ∩ V . Then

(L ⊗OXM)|W ∼= OW ⊗OW OW ∼= OW
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The identity element is clearly OX since

L ⊗OX OX ∼= L

Given L ∈ Pic(X), we claim that the inverse of L is given by L−1 = HomOX (L,OX). To
this end, we shall construct an isomorphism of OX-modules ϕ : L−1 ⊗OX L → OX . We
define ϕ pointwise by

ϕU : L−1(U)⊗OX(U) L(U)→ OX(U)

ψ ⊗ t 7→ ψU(t)

Since for every x ∈ X we can find an open neighbourhood x ∈ W ⊆ X such that L|W ∼=
OWL−1|W , we get an induced isomorphism of stalks so φ must be an isomorphism.

Finally, the associativity of the binary operation is immediate from the associativity of
tensor products of modules.

Definition 3.1.6. Let X be an integral scheme, η its unique generic point and K = Oη its
function field so that we have an injective ring homomorphism OX(U) ↪→ K for all open
U ⊆ X. We define a Cartier divisor to be a system of the form { (Ui, fi) }i∈I where the Ui
give an open covering of X and fi ∈ K is such that fi/fj and fj/fi are both in OX(Ui∩Uj).

We define an equivalence relation ∼ on the set of all Cartier divisors by declaring that
(Ui, fi) ∼ (Uα, gα) if and only if for all i, α we have that fi/gα is invertible in OX(Ui ∩ Vα).

A Cartier divisor D is said to be principal if it is represented by a single pair (X, f) for
some f ∈ K. In this case, we write D ∼ 0. Given two Cartier divisors E and F represented
by (Ui, fi) and (Vα, gα) respectively, we define E + F to be the divisor given by the system
Ui∩Vα, figα) and −E the divisor given by the system (Ui, 1/fi). If E−F ∼ 0 then we write
E ∼ F .

We define the Cartier divisor class group, denoted Div(X), to be the free abelian
group on the set of Cartier divisors modulo the equivalence relation ∼.

Definition 3.1.7. Let X be an integral scheme and K its function field. Given a Cartier
divisor D = (Vi, fi), we define an OX-module

OX(D)(U) = {h ∈ K | hfi ∈ OX(U ∩ Vi) }

Lemma 3.1.8. Let X be an integral scheme and K its functon field. Let D be a Cartier
divisor for X. Then OX(D) is indeed an OX-module.

Proof. We must first show that this definition is independent of the choice of representative
of D. Indeed, let D = (Vi, fi) and D′ = (Wα, gα) be two representatives of D (slightly
abusing notation). We want to show that OX(D) = OX(D′). Fix an open set U ⊆ X and
h ∈ OX(D)(U). By definition, h is an element of K such that hfi ∈ OX(U ∩ Vi) for all i.
Since D and D′ define the same divisor, we have that fi/gα is invertible in OX(Ui ∩ Vα) for
all i, α. Then

hfi ∈ OX(U ∩ Vi) =⇒ hfi ·
gα
fi
∈ OX(U ∩ Vi ∩Wα) for all i, α

=⇒ hgα ∈ OX(U ∩Wα) for all α

=⇒ h ∈ OX(D′)(U)

Hence OX(D) ⊆ OX(D′). By symmetry it then follows that OX(D) = OX(D′).
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It is clear that OX(D)(U) is an abelian group under addition and that it inherits the
restriction morphisms from OX and is thus a presheaf. To see that it is a sheaf, let U =

⋃
i Ui

be an open cover and hi ∈ OX(D)(Ui) such that hi|Ui∩Uj = hj|Ui∩Uj . We need to show
that there exists a unique h ∈ OX(D)(U) such that h|Ui = hi. Fixing m, observe that
{Ui ∩ Vm }i∈I is an open cover of U ∩ Vm. Then hifm are compatible on overlaps since the
hi are. Since OX is a sheaf, there exists a unique h′ ∈ U ∩ Vm such that h′|Ui = hifm.
Defining h = h′f−1

m ∈ K shows that hfm ∈ OX(U ∩ Vm). Indeed, if this were not the case
then we would have that (hfm)|Ui = hifm 6∈ OX(Ui ∩ Vm) which is a contradiction. Now by
the definition of a Cartier divisor, we have

hfm ∈ OX(U ∩ Vm) =⇒ hfm ·
fm′

fm
∈ OX(U ∩ Vm ∩ Vm′)

=⇒ hfm′ ∈ OX(U ∩ Vm′)

so that h ∈ OX(D)(U). Finally, OX(D) clearly inherits an OX-module structure as a subset
of K = OX(U).

Theorem 3.1.9. Let X be an integral scheme and K its function field. If D and E are
Cartier divisors on X then

1. OX(D) is invertible.

2. OX(D)⊗OX OX(E) ∼= OX(D + E).

3. OX(−D) ∼= OX(D)−1.

4. D ∼ E if and only if OX(D) ∼= OX(E).

Proof.

Part 1: Suppose that D is represented by (Ui, fi). We have isomorphisms

OX(D)|Ui ∼= OUi ·
1

fi
∼= OUi

Part 2: Define an isomorphism

ψU : OX(D)(U)⊗OX(U) OX(E)(U)→ OX(D + E)(U)

h⊗ h′ 7→ hh′

on open sets U ⊆ X. To see that this is well-defined, suppose that (Ui, fi) represents D
and (Vα, gα) represents E. Since h ∈ OX(D) we have hfi ∈ OX(U ∩ Ui) for all i. Similarly,
h′ ∈ OX(E) so that h′gα ∈ OX(U ∩ Vα) for all α. Then hh′figα ∈ OX(U ∩ Ui ∩ Vα) for all i
and α. Hence hh′ ∈ OX(D + E)(U).

Now, all OX-modules are invertible so we can find a common open set U such that

OX(D)|U ∼= OX(E)|U ∼= OX(DE)|U ∼= OX |U

Hence we have an induced isomorphism of stalks for every x ∈ X whence they must be
isomorphic.

Part 3: By the previous Part, we have

OX(−D)⊗OX OX(D) ∼= OX(−D +D) ∼= OX(0) ∼= OX
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But inverses are unique in Pic(X) so we must have that OX(−D) ∼= OX(D)−1.

Part 4: It suffices to show that D ∼ 0 if and only if OX(D) ∼= OX . To this end, first suppose
that D ∼ 0 so that D is represented by (X, f). Then OX(D) ∼= OX · 1

f
∼= OX .

Conversely, suppose that we have an isomorphism ϕ : OX → OX(D) and that D is
represented by (Ui, fi). Let f ∈ OX(D)(X) be the image of 1 ∈ OX(X) under ϕX . Then
OX(D)|U = OU · 1

f
.

On the other hand, OX(D)|Ui = OUi · 1
fi

. Hence f/fi is invertible in OX(Ui) for all i so

that D is represented by (X, f) whence D ∼ 0.

Remark. This Theorem provides an injection Div(X)→ Pic(X).

3.2 Differential Forms

Definition 3.2.1. Let R be a ring and S an R-algebra. For all s ∈ S let ds be a symbol
and X the free S-module generated by the ds. Let L be the S-submodule generated by the
relations

1. dr, r ∈ R

2. d(s+ t)− ds− dt, s, t ∈ S

3. d(st)− tds− sdt, s, t ∈ S

We define the module of relative differential forms of S over R to be ΩS/R = X/L.

Remark. Let M be an S-module and α : S →M a homomorphism such that

• α(r) = 0 for all r ∈ R

• α(s+ t) = α(s) + α(t)

• α(st) = tα(s) + sα(t)

Then α necessarily factors uniquely through ΩS/R.

Example 3.2.2. Let S = R[t1, . . . , tn] for some commutative ring R. Then dt1, . . . , dtn
generate ΩS/R where d(t1t2) = t2dt1 + t1dt2. In fact, dt1, . . . , dtn generate ΩS/R freely.
Indeed, define a homomorphism

α : S →M =
n⊕
i=1

S · dti

f 7→
n∑
i=1

∂f

∂ti
dti

then α(ti) = dti. The universal property of ΩS/R then implies that α factors uniquely
through ΩS/R, say via β : ΩS/R →M . β is necessarily surjective and M is free so it is infact
an isomorphism.
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Definition 3.2.3. Let f : X → Y be a morphism of affine schemes where X = Spec(S) and
Y = Spec(R). Let α : R→ S be the homomorphism of rings that induces f and consider S
as an R-algebra via α. We define the sheaf of relative differential forms of Y over X

to be ΩS/R
:

.
If X and Y are arbitrary schemes then we may take an affine open cover Y =

⋃
i Vi and

cover f−1Vi with affine schemes as f−1Vi =
⋃
j Ui,j. We then define ΩUij/Vi as above and

glue them together to define a global sheaf ΩX/Y .

Example 3.2.4. Let R be a ring, S = R[t1, . . . , tn], X = AnR = Spec(S) and Y = Spec(R).
Let f : X → Y be the morphism of schemes induced by the ring homomorphism

α : R→ R[t1, . . . , tn]

r 7→ r

and consider S as an R-module via α. Then ΩX/Y = ΩS/R
:

=
⊕n

i=1 S
:

=
⊕n

i=1OX

Example 3.2.5. Let R be a ring, S = R[t0, . . . , tn], X = PnR = Proj(S) and Y = Spec(R).
Let f : X → Y be the morphism of schemes induced by the ring homomorphism

α : R→ R[t0, . . . , tn]

r 7→ r

and consider S as an R-module via α. We can cover X by open affine sets of the form
D+(t0), . . . , D+(tn) where D+(ti) ∼= AnR. We can glue all the sheaves ΩD+(ti)/Y together to
get a sheaf ΩX/Y such that ΩX/Y

∼=
⊕n

i=1OD+(ti).

Theorem 3.2.6. Let R be a ring, X = PnR and Y = Spec(R). Then we have an exact
sequence

0 ΩX/Y

⊕n+1
i=1 OX(−1) OX 0

Proof. Proof omitted (see handwritten Part III notes).

Example 3.2.7. With assumptions as before, we have that Ω(X/Y ) = 0. Indeed, the
Theorem gives us an injection

ΩX/Y (X) ↪→
n+1⊕
i=1

OX(−1)(X)

But by a question on an example sheet, we know the latter sheaf has no non-trivial global
sections.

Example 3.2.8. Let f : X → Y be a closed immersion. Then ΩX/Y = 0. Indeed, we
may assume that X and Y are affine schemes so that X = Spec(S), Y = Spec(R) and let
f correspond to some ring homomorphism α : R → S so that S ∼= R/ kerα. Since α is
surjective, it follows that ΩS/R = 0.
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4 Cohomology

4.1 Results from Category Theory

Definition 4.1.1. By an abelian category we shall mean one of the following

1. AbGrp - Category of abelian groups and homomorphisms of groups.

2. ModR - Category of modules over a commutative ring R and R-module homomor-
phisms.

3. Sh(X) - Category of sheaves of rings over a topological space X and morphisms of
sheaves.

4. Mod(X) - Category of OX-modules over a ringed space (X,OX ) and morphisms of
OX-modules.

5. Qco(X) - Category of quasi-coherent sheaves on a scheme X and morphisms of quasi-
coherent sheaves.

Definition 4.1.2. Let A be an abelian category. By a complex we mean a sequence

. . . A−1 A0 A1 A2 . . .d−1 d0 d1

of objects and morphisms in A such that im di−1 ⊆ ker di. We denote such a sequence by
A•.

We define the ith-cohomology object of A• to be

hi(A•) =
ker di

im di−1

We say that A• is exact if hi(A•) = 0 for all i.

Definition 4.1.3. Let A be an abelian category and A• and B• complexes in A. We define
a morphism of complexes to be morphisms fi : Ai → Bi for each i such that the diagrams

Ai Ai+1

Bi Bi+1

ai

fi fi

bi

commute for all i. Given a sequence

0 A• B• C• 0

of complexes and morphisms between them, we say that such a sequence is exact if the
sequence

0 Ai Bi Ci 0

is exact for every i.

Proposition 4.1.4. Let A be an abelian category and

0 A• B• C• 0
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an exact sequence of complexes. Then we have a long exact sequence of cohomology groups

0 h0(A•) h0(B•) h0(C•)

h1(A•) h1(B•) h1(C•)

h2(A•) h2(B•) h2(C•)

hn(A•) hn(B•) hn(C•)

Definition 4.1.5. Let A and B be abelian categories. We say that a functor F : A → B is
additive if for all A,A′ ∈ obA the map Hom(A,A′)→ Hom(FA, FA′) is a homomorphism
of abelian groups.

We say that F is left-exact if it is additive and for each exact sequence

0 A A′ A′′ 0

we have an exact sequence

0 FA FA′ FA′′

Similarly, we have right-exact functors. We say that a functor is exact if it is both left and
right exact.

Example 4.1.6. We have a left-exact functor

F : Sh(X)→ AbGrp

F 7→ F(X)

Definition 4.1.7. Let A be an abelian category. We say that an object I ∈ obA is
injective if for every diagram

0 A A′

I

with first row exact there exists a morphism A′ → I extending the diagram to a commutative
diagram.

Example 4.1.8. Q is injective in Grp.

Definition 4.1.9. Let A be an abelian category and A ∈ obA an object. We define a
injective resolution of A to be a sequence

0 A I0 I1 . . .

where each I i is injective. We say that A has enough injectives if every object admits
an injective resolution.

Example 4.1.10. Let R be a commutative ring. Then ModR has enough injectives.
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Definition 4.1.11. Let A and B be abelian categories such that A has enough injectives.
Let F : A → B be a left-exact covariant functor of abelian categories. We define the right-
derived functors RiF : A → B in the following way. For all objects A ∈ obA choose an
injective resolution I(A). Then we define RiF (A) = hi(FI(A)).

Theorem 4.1.12. Let A and B be abelian categories such that A has enough injectives. Let
F : A → B be a left-exact covariant functor of abelian categories. Then

1. RiF is independent of the choice of the injective resolution2.

2. R0F = F

3. Every exact sequence

0 A A′ A′′ 0

induces a long exact sequence

0 R0F (A) R0F (A′) R0F (A′′)

R1F (A) R1F (A′) R1F (A′′)

R2F (A) R2F (A′) R2F (A′′)

RnF (A) RnF (A′) RnF (A′′)

4. For every commutative diagram

0 A A′ A′′ 0

0 B B′ B′′ 0

we have a commutative diagram

. . . RiF (A) RiF (A′) iF (A′′) . . .

. . . RiF (B) RiF (B′) RiF (B′′) . . .

Definition 4.1.13. Let A and B be abelian categories such that A has enough injectives.
Let F : A → B be a left-exact covariant functor of abelian categories. An object J ∈ obA
is said to be acyclic if RiF (J) = 0 for all i > 0.

Theorem 4.1.14. Let A and B be abelian categories such that A has enough injectives. Let
F : A → B be a left-exact covariant functor of abelian categories. If

2Injective resolutions are unique up to homotopy and cohomology objects are homotopy-invariant.
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0 AJ0 J1 . . .

is an exact sequence with J i acyclic for all i then

RiF (A) = hi(0→ F (J0)→ F (J1)→ . . . )

Proof. Proof omitted.

Example 4.1.15. The following are all left-exact functors

1. Sh(X)→ AbGrp : F 7→ F(X)

2. Mod(X)→ AbGrp : F 7→ F(X)

3. ModR → ModR : M 7→ HomR(L,M) for some commutative ring R and R-module
L.

4. Sh(X)→ Sh(Y ) : F 7→ f∗F for some continuous function f : X → Y

4.2 Cohomology of Sheaves

Proposition 4.2.1. Let X be a topological space. Then Sh(X) has products and the functor
F : Sh(X)→ AbGrp reflects them.

Proof. This is immediate from the definitions.

Proposition 4.2.2. Let X be a topological space, G a sheaf on X and {Fi }i∈I a family of
sheaves on X. Then

Hom

(
G,
∏
i∈I

Fi

)
∼=
∏
i∈I

Hom (G,Fi)

Proof. Let πj :
∏

i∈I Fi → Fj be the jth projection map that the product comes equipped
with. Fix an open set U ⊆ X and define

ϕU : Hom

(
G,
∏
i∈I

Fi

)
(U)→

(∏
i∈I

Hom(G,Fi)

)
(U)

ψ 7→ (πi|U ◦ ψ)i∈I

One easily verifies that this is indeed an isomorphism of abelian groups and is compatible
with restriction maps.

Theorem 4.2.3. Let (X,OX) be a ringed space. Then Mod(X) has enough injectives.

Proof. Fix an OX-module F ∈ Mod(X) and x ∈ X. Then Fx is an Ox module. Since
ModOx has enough injectives, we can find an injective Ox-module and an injective homo-
morphism Fx ↪→ Ix. Let fx denote the embedding of topological spaces {x } ↪→ X. Then
Ix can be viewed as a sheaf of modules on the singleton space {x }. Define I =

∏
x∈X fx∗Ix.

We claim that I is injective. First note that, for all sheaves G ∈ obMod(X), Proposition
4.2.2 implies that

Hom(G, I) =
∏
x∈X

Hom(G, fx∗Ix)
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On the other hand, it is easy to see that we have an isomorphism

HomOX (G, fx∗Ix)(X) ∼= HomOx(Gx, Ix)

given by sending a morphism of Ox-modules to the corresponding homomorphism of stalks
at x. Now consider a diagram

0 G H

I

ϕ

Descending to stalks, we have a diagram

0 Gx Hx

Ix = Ix

ϕx

But Ix is injective so there must exist a morphism completing the above diagram to a
commutative diagram. By the aforementioned isomorphism of Hom-sets, we can lift this
homomorphism of Ox-modules to a morphism of OX-modules to complete the first diagram
into a commuatative diagram. Hence I is injective as claimed.

Now fix an object F ∈ obMod(X). We want to construct an injective resolution for F .
By the previous discussion, we can choose an injective object I0 so that we get a sequence

0 F I0

Now set F1 = I0/F which is naturally an OX-module. This gives us a short exact sequence

0 F I0 F1 0

We may choose an injective object I1 together with an injective morphism F1 → I1 so that
we get a sequence

0 F I0 I1

Continuing in this way, we can construct an injective resolution of F . Hence Mod(X) has
enough injectives.

Corollary 4.2.4. Let X be a topological space. Then Sh(X) has enough injectives.

Proof. Let OX be the constant sheaf on X associated to Z. Then (X,OX) is a ringed space
and any F ∈ ob Sh(X) is naturally an OX-module. Applying the Theorem then allows us
to construct injective resolutions of sheaves of rings on X.

Definition 4.2.5. Let X be a topological space and F ∈ Sh(X) a sheaf. Let F : Sh(X)→
AbGrp be the functor sending a sheaf to its corresponding group of global sections. We
define the ith-sheaf cohomology group to be

H i(X,F) = RiF (F)

Example 4.2.6. Let {x } = X be a singleton space and F : Sh(X)→ AbGrp the functor
which sends a sheaf to its associated global sections. We claim that H i(X,F) = 0 for all
i > 0. Indeed, fix a sheaf F ∈ ob Sh(X). Choose an injective resolution

0 F I0 I1 . . .
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Taking stalks we get an exact sequence

0 Fx I0
x I1

x . . .

But for a singleton space, stalks coincide with global sections so we infact have an exact
sequence

0 F(X) I0(X) I1(X) . . .

so that H i(X,F) = 0 for all i > 0.

Example 4.2.7. Let K be a field and S = K[t0, t1]. Let X = P1
K = Proj(S). Let x ∈ X

be the point corresponding to the ideal I = 〈t1〉. We have an exact sequence

0 I S S�I 0

which yields an exact sequence of OX-modules

0 Ĩ S̃ S�I
:

0

Letting f : {x } ↪→ X be the natural embedding and I = Ĩ the ideal sheaf corresponding
to {x }, this exact sequence is infact

0 I OX f∗O{x } 0

Note that we have an isomorphism

S(−1) ∼= I

a 7→ at1

so that we have an isomorphism I ∼= OX(−1). The exact sequence then becomes

0 OX(−1) OX f∗O{x } 0

Passing to cohomology groups yields a long exact sequence

0 H0(X,OX(−1)) H0(X,OX) H0(X, f∗O{x })

H1(X,OX(−1)) H1(X,OX) H1(X, f∗O{x })

Since OX(−1) has no global sections, we have that H0(OX(−1)) = 0. Moreover, we have
H0(X,OX) = H0(X, f∗O{x }) = K.
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4.3 Flasque Sheaves

Definition 4.3.1. Let X be a topological space and F ∈ ob Sh(X). We say that F is
flasque if for all open U ⊆ X, the restriction morphism F(X) → F(U) is a surjective
homomorphism.

Theorem 4.3.2. Let (X,OX) be a ringed space. If I ∈ obMod(X) is injective then I is
flasque.

Proof. Fix an open set U ⊆ X and let t ∈ I(U). We need to exhibit an element of I(X)
that maps to t under the restriction morphism I(X)→ I(U). Define a sheaf LU by

LU(W ) =

{
0 if W 6⊆ U
OX(W ) if W ⊆ U

Clearly, LU is a subsheaf of OX . Now define a morphism of sheaves LU → I by

ϕW : LU(W )→ I(W ) =

{
0 if W 6⊆ U
a 7→ at|W if W ⊆ U

We then have a commutative diagram

0 LU OX

I

ϕW

with first row exact. Since I is injective, there exists a morphism ψ : OX → I completing
the diagram to a commutative diagram. Since ψ is a morphism of sheaves, we have a
commutative diagram

OX(X) OX(U)

I(X) I(U)

|U

ψX ψU

|U

Chasing 1 ∈ OX(X) around the diagram shows that there must exist s ∈ I(X) mapping to
t ∈ I(U) under |U so that I is flasque.

Theorem 4.3.3. Let X be a topological space and F ∈ ob Sh(X) a flasque sheaf. Then
H i(X,F) = 0 for all i > 0.

Proof. Since S〈(X) has enough injectives, we can find an injective sheaf I and an inclusion
morphism F ⊆ I. Setting G = I/F yields a short exact sequence

0 F I G 0

We first claim that G is flasque. In order to do this, we shall show that we have an exact
sequence

0 F(X) I(X) G(X) 0α

Since taking global sections is left-exact, it suffices to show that α is surjective. Fix t ∈ G(X).
Since ϕ : I → G is surjective, the corresponding homomorphism of stalks is also surjective.
This implies that there exists an open neighbourhood U ⊆ X and en element s ∈ I(U) such
that α(s) = t|U . Consider pairs (U1, s1) and (U2, s2) such that si ∈ I(Ui) and α(si) = t|Ui .
Then s1|U1∩U2 − s2|U1∩U2 map to 0 under α. Since the sequence
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0 F(U1 ∩ U2) I(U1 ∩ U2) G(U1 ∩ U2)

is exact, s1|U1∩U2 − s2|U1∩U2 ∈ F(U1). Now, F is flasque so there exists r ∈ F(U1 ∪U2) such
that r|U1∩U2 = s1|U1∩U2− s2|U1∩U2 . Then s2 + r|U2 and s1 are compatible on overlaps. Indeed

(s2 + r|U2)|U1∩U2 = s2|U1∩U2 + r|U1∩U2 = s2|U1∩U2 + s1|U1∩U2 − s2|U1∩U2 = s1|U1∩U2

Since I is a sheaf, they glue to give a section s ∈ I(U1 ∪ U2). By construction,

s|U1 = s1 7→ t|U1

s|U2 = s2 + r|U2 7→ t|U2

and so s 7→ t|U1∪U2 under α. Now let

A = { (U, s) | U ⊆ X open , s ∈ I(U), s 7→ t|U }

Define a partial order ≤ on A by declaring (U, s) ≤ (U ′, s′) if and only if U ⊆ U ′ and
s′|U = s. By Zorn’s Lemma, there exists a maximal element in A, say (U, s). We claim
that, in fact, U = X. Suppose, for a contradiction, that U 6= X. Choose x ∈ X\U and an
open neighbourhood x ∈ V ⊆ X and l ∈ I(V ) mapping to t|V under α. By the previous
argumentation, we can construct m ∈ I(U ∪V ) such that m|U = s,m|V = l and m 7→ t|U∩V .
But this contradicts the maximality of (U, s) so we must have that U = X and so s ∈ I(X)
is the desired element mapping to t under α. Thus α is surjective. Now consider the diagram

I(X) G(X)

I(W ) G(W )

α

|W |W
β

The exact same argumentation shows that β is surjective. Since I is flasque, it follows that
|W : G(X)→ G(W ) is surjective when G flasque as claimed.

We now have a long exact sequence of cohomology groups

0 H0(X,F) H0(X, I) H0(X,G)

H1(X,F) H1(X, I) H1(X,G)

Since I is injective, it admits the trivial injective resolution

0 I I 0 . . .

so that H i(X, I) = 0 for all i > 0. Since α : I(X)→ G(X) is surjective, it then follows that
H1(X,F) = 0. From this it follows that H1(X,G) ∼= H i+1(X,F) for all i > 0. But G is
flasque so, by the same argumentation for F , we see that H1(X,G) = 0 so that H2(X,F) = 0
by induction. Continuing in this way using induction we can show that H i(X,F) = 0 for
all i > 0.

Corollary 4.3.4. Let X be a topological space and F ∈ ob Sh(X) a flasque sheaf. Suppose
that F admits a flasque resolution

0 F I0 I1 . . .

Then

H i(X,F) = hi(0→ I0(X)→ I1(X)→ . . . )
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Proof. Since each Ij is flasque, Theorem 4.3.3 implies that H i(X, Ij) = 0 for all i > 0,
j ≥ 0. Hence each Ij is acyclic and so appealing to Theorem 4.1.14 proves the claim.

Corollary 4.3.5. Let (X,OX) be a ringed space and F an OX-module. Consider the functor

F : Mod(X)→ AbGrp

G 7→ G(X)

Then H i(X,F) is isomorphic to RF i(F). In other words, cohomology calculated in Sh(X)
coincides with that calculated in Mod(X).

Proof. Fix an injective resolution

0 F I0 I1 . . .

in Mod(X). By Theorem 4.3.2 this is infact a flasque resolution. Corollary 4.3.4 then implies
the assertion of the Corollary.

4.4 Cohomology of Affine Schemes

Proposition 4.4.1. Let R be a Noetherian ring and I an injective R-module. Then Ĩ is
flasque.

Proof. Proof omitted.

Definition 4.4.2. Let X be a scheme and b ∈ OX(X). Define

D(b) = {x ∈ X | b−1 ∈ Ox }

Remark. If X is an affine scheme then this coincides with the previous definition of D(b).

Proposition 4.4.3. Let X be a Noetherian scheme. Then X is affine if and only if there
exists b1, . . . , bn ∈ OX(X) such that D(bi) are affine and OX(X) = 〈b1, . . . , bn〉.

Proof. Proof omitted.

Definition 4.4.4. Let X be a scheme. We say that x ∈ X is closed if {x } is a closed
subset of X.

Proposition 4.4.5. Let X be a Noetherian scheme and Z ⊆ X a closed subset. Then there
exists a closed point x ∈ Z.

Proof. Choose an open affine subset U ⊆ X such that U ∩ Z 6= ∅. If Z 6⊆ U then replace
Z with Z ∩ (X\U). Continuining in this way, we can construct a chain of closed subsets

· · · ( Z2 ( Z1

But X is Noetherian so this process must terminate and so we can find a closed subset of Z
that is contained in U , overloading notation, we also call it Z. Then Z = Spec(R) for some
ring R. Let m be any maximal ideal of R. Then {m } is a closed subset of Z. Since Z is
closed in X, it then follows that m is closed in Z so that m is a closed point of X.

Theorem 4.4.6. Let X be a Noetherian scheme. Then the following are equivalent:

1. X is affine.
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2. H i(X,F) = 0 for all i > 0 and quasi-coherent F .

3. H1(X, I) = 0 for all coherent ideal sheafs I.

Proof.

(1) =⇒ (2): First suppose that X is affine so that X = Spec(R) for some ring R. Fix a

quasi-coherent sheaf F ∈ obQco(X) so that F = M̃ for some R-module M . Fix an injective
resolution of M

0 M I0 I1 . . .

in ModR. Then

0 M̃ Ĩ0 Ĩ1 . . .

is an flasque resolution of F in Mod(X) by Proposition 4.4.1. Corollary 4.3.4 then implies
that

H i(X,F) = hi(0→ Ĩ0(X)→ Ĩ1(X)→ . . . )

= hi(0→ I0 → I1 → . . . )

which is exact. Hence H i(X,F) = 0 for all i > 0.

(2) =⇒ (3): This assertion is trivial considering all coherent ideal sheafs are themselves
quasi-coherent sheaves.

(3) =⇒ (1): Fix a closed point x ∈ X and an open affine set x ∈ U . Let Y = X\U so that
both Y and Y ∪ { x } are closed. We first claim that any closed set Z ⊆ X can be endowed
with the structure of a closed subscheme of X. Indeed, consider the sheaf

IZ(W ) = { a ∈ OX(W ) | a−1 6∈ Oz for all z ∈ W ∩ Z }

If W = Spec(R) is open affine then IZ |W = Ĩ where I /R is the largest ideal of R such that
Z ∩WV (I). Hence IZ is quasi-coherent (in fact, it is coherent since X is Noetherian) and
so Z has a closed subscheme structure.

We can apply this construction to the closed sets Y and Y ∪{x } to get closed subschemes
IY and IY ∪{x }. Since Y ⊆ Y ∪ {x }, we have an inclusion of sheaves IY ∪{x } ⊆ IY . Letting
L = IY /IY ∪{x } we have an exact sequence

0 IY ∪{x } IY L 0

Since L|X\{x } = 0, it follows that L is the skyscraper sheaf associated to κ(x), the residue
field at x. By assumption, we have H1(X, IY ∪{x }) = 0 so taking cohomology of the above
exact sequence yields an

0 H0(X, IY ∪{x }) H0(X, IY ) H0(X,L) 0α

Since H0(X,L) = κ(x) and α is surjective so there exists b ∈ H0(X, IY ) such that α(b) =
1 ∈ κ(x). But this means that any representative of α(b) is invertible in Ox and so x ∈ D(b).
By construction, D(b) ⊆ U . Hence for every closed point x ∈ X, there is a global section
b ∈ OX(X) such that x ∈ D(b). Hence we can construct a family of global sections bi
such that each D(bi) is affine and

⋃
i∈I D(bi) contains all closed points of X. In fact,

X =
⋃
i∈I D(bi). Indeed, if this were not the case then X \

⋃
i∈I D(bi) would be closed and

would thus contain a closed point of X which is a contradiction. Since X is Noetherian, we
may assume that there are only finitely many such bi.
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We now claim that OX(X) is generated by the bi. We will then be able to conclude that
X is affine by Proposition 4.4.3.

Define a morphism of sheaves

ϕU :

(
n⊕
i=1

OX

)
(U)→ OX(U)

(s1, . . . , sn) 7→
n∑
i=1

bi|Usi

Let F be the kernel of this morphism. Then we have an exact sequence of sheaves

0 F
⊕n

i=1OX OX 0
ϕ

ϕ is surjective since it is locally surjective. Indeed, for all x ∈ X, ϕx is surjective since there
exists some bi which is invertible in Ox. Now define a filtration of length n, denoted Gi, by

0 ⊆ OX ⊕ 0 · · · ⊕ 0 ⊆ OX ⊕OX ⊕ · · · ⊕ 0 ⊆ · · · ⊆
n⊕
i=1

OX

Then, clearly, Gi/Gi−1
∼= OX . Let Fn = F and inductively define Fi−1 = ker(Fi → Gi/Gi−1).

We then have exact sequences

0 Fi−1 Fi Fi�Fi−1
0

Moreover, Fi/Fi−1 ⊆ Gi/Gi−1 ⊆ OX so that Fi/Fi−1 is a coherent ideal sheaf. By hypothesis,
we then have that H1(X,Fi/Fi−1) = 0. Then kerF0 = 0 whence H1(X,F0) = 0. By
induction, it then follows that H1(X,Fi) = 0 for all i and, in particular, H1(X,F) = 0. We
then have a short exact sequence of cohomology groups

0 H0(X,F) H0(X,Gn) H0(X,OX) 0
ϕ

Hence ϕ is surjective on global sections whence there exists (s1, . . . , sn) ∈ Gn(X) such that
1 =

∑
i bisi and so OX(X) = (b1, . . . , bn).

4.5 Čech Cohomology

Definition 4.5.1. Let X be a topological space and F ∈ Sh(X) a sheaf. Let U = {Ui }i∈I
be an open covering of X where I is a well-ordered set. Given i0, . . . , ip ∈ I, let Ui0,...,ip =
Ui0 ∩ · · · ∩ Uip . We define

Cp(U ,F) =
∏

i0<···<ip

F(Ui0,...,ip)

Moreover, we define a map dp : Cp(U ,F) → Cp+1(U ,F) given by sending (si0,...,ip) to
(ti0,...,ip+1) where

ti0,...,ip+1 =

p+1∑
l=0

(−1)lsi0,...,îl,...,ip+1
|Ui0,...,ip+1

where îl is understood to mean that the il-index is dropped. It can be checked that dp+1dp =
0 so that this forms a cochain complex of abelian groups which we refer to as a Čech
complex. We define the pth Čech cohomology group Ȟp(U ,F) to be the pth cohomology
group of the aforementioned complex.
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Proposition 4.5.2. Let X be a topological space and F ∈ Sh(X) a sheaf. Let U = {Ui }i∈I
be an open covering of X. Then

Ȟ0(U ,F) ∼= F(X) ∼= H0(X,F)

Proof. By definition, Ȟ0(U ,F) = ker d0. Now, C0(U ,F) =
∏

i∈I F(Ui) and C1(U ,F) =∏
i<j F(Ui ∩ Uj). Then

d1 :
∏
i∈I

F(Ui)→
∏
i<j

F(Ui ∩ Uj)

(si) 7→ ([si − sj]|Ui∩Uj)

So that ker d0 = { (si) | si|Ui∩Uj = sj|Ui∩Uj }. But this is exactly the global sections of F
since it is a sheaf.

Example 4.5.3. Let K be a field and X = P1
K = ProjK[t0, t1]. Consider the open cover

U = {U0, U1 } where U0 = D+(t0), U1 = D+(t1). The Čech complex of OX is

C•(U ,OX) : 0 C0(U ,OX) C1(U ,OX) C2(U ,OX) . . .

Now, Cp(U ,OX) = 0 for all p ≥ 2 since there are only two sets in the open cover. Moreover,

C0(U ,OX) = OX(U0)⊕OX(U1) = K[t0, t1](t0) ⊕K[t0, t1](t1)

and

C1(U ,OX) = OX(U0 ∩ U1) = OX(D+(t0t1)) = K[t0, t1](t0t1)

Writing u = t1/t0 and v = t0/t1, we first claim that K[t0, t1](t0)
∼= K[u]. Indeed, define a

homomorphism

ϕ : K[t0, t1](t0) → K[u]
∑
i+j=n

aijt
i
0t
j
1

tn0

 7→ ∑
i+j=n

aiju
j

which is clearly well-defined, surjective and injective. The Čech complex is then just

0 K[u]⊕K[v] K[u, 1/u] 0

(f, g) f(u)− g(1/u)

d0

so that

ker d0 = { (f, g) | f(u)− g(1/u) = 0 }
= { (f, g) | f = g ∈ K } ∼= K

Since d0 is surjective, it then follows that Ȟp(U ,OX) = 0.

Example 4.5.4. Let K be a field, X = P1
K = ProjK[t0, t1] and Y = SpecK. Consider the

open cover U = {U0, U1 } where U0 = D+(t0), U1 = D+(t1). The Čech complex of ΩX/Y is
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C•(U ,ΩX/Y ) : 0 C0(U ,ΩX/Y ) C1(U ,ΩX/Y ) C2(U ,ΩX/Y ) . . .

Now, Cp(U ,ΩX/Y ) = 0 for all p ≥ 2 since there are only two sets in the open cover. Moreover,
writing u = t1/t0 and v = t0/t1, we have

C0(U ,ΩX/Y ) = ΩX/Y (U0)⊕ ΩX/Y (U1) = K[u]du⊕K[v]dv

and

C1(U ,OX) = OX(U0 ∩ U1) = K[u, 1/u]du

so that d0 is the map

(fdu, gdv) 7→ f(u)du+
1

u2
g(1/u)du

so that ker d0 = 0 whence Ȟp(U ,ΩX/Y ) = 0. Moreover, im d0 contains ur · du for all r ∈ Z
except r = −1 so that 1/udu 6∈ im d0. THen

Ȟ1(U ,ΩX/Y ) =
ker d1

im d0
=
K[u, 1/u]du

im d0
∼= K

1

u
du ∼= K

Furthermore, Ȟp(U ,ΩX/Y ) = 0 for all p > 1.

Example 4.5.5. Let K be a field, X = P1
K = ProjK[t0, t1] and F the constant sheaf

associated to Z. Consider the open cover U = {U0, U1 } where U0 = D+(t0), U1 = D+(t1).
The Čech complex of F is

C•(U ,F) : 0 C0(U ,F) C1(U ,F) C2(U ,F) . . .

Now, Cp(U ,F) = 0 for all p ≥ 2 since there are only two sets in the open cover. Moreover,

C0(U ,F) = F(U0)⊕F(U1) = Z⊕ Z
and

C1(U ,F) = F(U0 ∩ U1) = Z

so that d0 is the map

(m,n) 7→ m− n

Now, ker d0 = { (m,n) | m = n } = Z whence Ȟ0(U ,F) = F(X) = Z. Moreover, d0 is
surjective so that Ȟp(U ,F) for all p > 0.

Example 4.5.6. Let X = S1 be endowed with the subspace topology from R. Let α = (0, 1)
and β = (1, 0) so that U = {U, V } where U = X \ {α } and V = X \ { β } form an open
cover of X. Let F be the constant sheaf on X associated to Z. The Čech complex of F is

C•(U ,F) : 0 C0(U ,F) C1(U ,F) C2(U ,F) . . .

Now, Cp(U ,F) = 0 for all p ≥ 2 since there are only two sets in the open cover. Moreover,

C0(U ,F) = F(U0)⊕F(U1) = Z⊕ Z
and

C1(U ,F) = F(U0 ∩ U1) = Z⊕ Z
so that d0 is the map

(m,n) 7→ (m− n,m− n)

We then see that ker d0 ∼= Z and im d0 ∼= Z. So Ȟ0(X,F) = Z and also Ȟ1(U ,F) = Z.
Finally, Ȟp(U ,F) = 0 for all p > 1.

52



4.6 Cohomology of Schemes

Definition 4.6.1. Let X be a topological space, F ∈ Sh(X) a sheaf and U = {Ui }i∈I an
open cover of X for some well-ordered set I. Let Ui0,...,ip = Ui0 ∩ · · · ∩ Uip and let fi0,...,ip
denote the inclusion map Ui0,...,ip ↪→ X. Let Fi0,...,ip denote the sheaf (fi0,...,ip)∗(F|Ui0,...,ip ).
Define

Cp(U ,F) =
∏

i0<···<ip

Fi0,...,ip

and a map

dp : Cp(U ,F)→ Cp+1(U ,F)

pointwise on open U ⊆ X by sending (si0,...,ip) to (ti0,...,ip+1) where

ti0,...,ip+1 =

p+1∑
l=0

(−1)lsi0,...,îl,...,ip+1
|Ui0,...,ip+1

∩U

We can similarly check that dp+1dp = 0 so that we get a complex

C•(U ,F) : 0 C0(U ,F) C1(U ,F) . . .d0 d1

We extend this to a complex

C•(U ,F) : 0 F C0(U ,F) C1(U ,F) . . .

s ∈ F(W ) (s|W∩Ui)

d0 d1

called the sheaf Čech complex.

Lemma 4.6.2. Let X be a topological space, F ∈ Sh(X) a sheaf and U = {Ui }i∈I an open

cover of X for some well-ordered set I. The the sheaf Čech complex of F is exact.

Proof. We first claim that

0 F C0(U ,F) C1(U ,F)d−1 d0

is exact by the definition of a sheaf. Indeed, fix an open W ⊆ X and suppose that (s|W∩Ui) =
0. Since W ∩ Ui is an open cover of W , the zero sections glue together uniquely to give the
zero section in F(W ) so d−1 must be injective. To show exactness at C0(U ,F), we need to
show that ker d0 ⊆ im d−1. To this end, fix an open W ⊆ X. Suppose that (si) ∈ ker d0.
Then by definition of the differential, we have that

(si − sj)|Ui,j∩W = 0

But then si|Ui∩Uj∩W = sj|Ui∩Uj∩W so that the si are compatible on overlaps of the open
cover Ui ∩W of W . The sheaf axiom then implies that the si glue together to give a unique
s ∈ FW such that s|Ui∩W = si. But then (si) ∈ im d−1 by the definition of d−1.

We now want to show that

Cp−1(U ,F) Cp(U ,F) Cp+1(U ,F)dp−1 dp

53



for all p ≥ 1. It suffices to show this on the level of stalks. In other words, for all x ∈ X,
we need to show that

Cp−1(U ,F)x Cp(U ,F)x Cp+1(U ,F)x
dp−1
x dpx

is exact. Since we are working with stalks, we can throw away any Ui for which x 6∈ Ui and
assume that X = U0 = · · · = Un by replacing X and each Ui with

⋂n
i=1 Ui. Now define a

map

ep : Cp(U ,F)x → Cp−1(U ,F)x

[W, (si0,...,ip)] 7→ [W, (ti0,...,ip−1)]

where

ti0,...,ip−1 =

{
sj,i0,...,ip−1 if i0 6= j, j = min I
0 if i0 = j

Now, let δi0,j = 0 if i0 = j and 1 otherwise, then

(dp−1
x ep + ep+1dpx)([W, si0,...,ip ]) = dp−1

x ep([W, si0,...,ip ]) + ep+1dpx

= dp−1
x (δi0,j[W, s0,i0,...,ip−1)] + ep+1

p+2∑
l=0

(−1)l[W, si0,...,îl,ip+1
]

= δi0,j

p∑
m=0

(−1)m[W, s0,i0,...,îm,...,ip
] + δi0,j

p+2∑
l=0

(−1)l[W, s0,i0,...,îl,...,ip+1
]

= [W, si0,...,ip ]

so that dp−1
x ep + ep+1dpx = id. Now fix [W, si0,...,ip ] ∈ ker dpx. Applying this formula, we have

dp−1
x ep([W, si0,...,ip ]) = [W, si0,...,ip ]

so that [W, si0,...,ip ] ∈ im dp−1
x .

Theorem 4.6.3. Let X be a topological space and U = {Ui } a finite open cover of X . If
F ∈ Sh(X) is flasque then

Ȟp(U ,F) = 0

for all p > 0.

Proof. Consider the Čech complex resolution of F

0 F C0(U ,F) C1(U ,F) . . .

Since F is flasque, so is F|Ui0,...,ip and, in particuar, Fi0,...,ip is also flasque. Hence Cp(U ,F)
is flasque for all p ≥ 0 whence the above is a flasque resolution of F . By Corollary 4.3.4 we
know that Hp(X,F) is calculated on the sequence

0 C0(U ,F)(X) C1(U ,F)(X) . . .

On the other hand, the cohomology of the first sequence is Ȟp(U ,F) by definition and so
Ȟp(U ,F) = Hp(U ,F) by definition. But the latter is 0 by Theorem 4.3.3.
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Theorem 4.6.4. Let X be a Noetherian scheme such that the intersection of any two open
affine subschemes is again affine. Let U = {Ui } be a finite open affine cover of X. Then

Ȟp(U ,F) ∼= Hp(X,F)

for all quasi-coherent sheaves F on X.

Proof. Consider the Čech resolution of F

0 F C0(U ,F) C1(U ,F) . . .

We first claim that H l(X, Cp(U ,F)) = 0 for all p ≥ 0 and l > 0. It is in fact enough to show
that H l(X,Fi0,...,ip) = 0 for all p ≥ 0 and l > 0. By hypothesis, Ui0,...,ip is affine so Theorem
4.4.6 implies that

H l(Ui0,...,ip ,F|Ui0,...,ip ) = 0

for all p > 0 and l ≥ 0. By Proposition 4.4.1, we can choose a flasque resolution

0 F|Ui0,...,ip I0 I1 . . .

where each Ij is quasi-coherent. Then (fi0,...,ip)∗Ij are flasque and quasi-coherent. Then

0 Fi0,...,ip (fi0,...,ip))∗I0 (fi0,...,ip))∗I1 . . .

is also a flasque resolution of Fi0,...,ip . Hence, H l(X,Fi0,...,ip are calculated by th complex

0 (fi0,...,ip))∗I0(X) (fi0,...,ip))∗I1(X) . . .

But this is the same as the complex

0 I0(Ui0,...,ip) I1(Ui0,...,ip) . . .

which calculates the cohomology of H l(Ui0,...,ip ,F|Ui0,...,ip . But this is 0 by Theorem 4.4.6.

So H l(X,Fi0,...,ip) = 0 as claimed. This shows that the Cp(U ,F) are acyclic with respect to

the global section functor so by Theorem 4.1.14 we can calculate H l(X,F) using the Čech
complex of F . This is given by the cohomology of

0 C0(U ,F)(X) C1(U ,F)(X) . . .

which is just the ordinary Čech complex

0 C0(U ,F) C1(U ,F) . . .

But we know that the cohomology of this is Hp(X,F) = Ȟp(X,F) so we are done.

Remark. We give a remark on when the conditions of the previous Theorem hold. Let
f : X → Y be a morphism of schemes with Y = Spec(R) affine. We say that f is projective
if there exists a commutative diagram

X PnR

Y

g

f
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where g is a closed immersion. If Y is not affine then we can define Pn over open affine subsets
and glue them together. We say that f is quasi-projective if there exists a commutative
diagram

X Z

Y

g

f

with g an open immersion. Now assume that R is Noetherian. Then the intersection of any
two open affine subschemes in X is again affine.

5 Cohomology of Projective Schemes

Theorem 5.0.1. Let K be a field and X = PnK = Proj(S) where S = K[t0, . . . , tn]. Then

1. H0(X,OX(d)) is the K-vector space generated by all monomials in t0, . . . , tn of degree
d.

2. dimK H
n(X,OX(d)) = dimK H

0(X,OX(−n− 1− d)).

3. Hp(X,OX(d)) = 0 for all p > n.

4. Hp(X,OX(d)) = 0 for all 0 < p < n.

Proof.

Part 1: We have that

H0(X,OX(d)) = OX(d)(X) ∼= { (si) | si ∈ OX(d)(Ui), si|Ui∩Uj = sj|Ui∩Uj }

where Ui = D+(ti). Now, OX(d)(Ui) = S(d)(ti) so that si ∈ OX(d)(Ui) satisfies si = fi
t
ei
i

where fi is homogeneous of degree d+ ei in S. Then

si|Ui∩Uj = sj|Ui∩Uj ⇐⇒
fi
teii

=
fj
t
ej
j

∈ S(D)(t1t2)

⇐⇒ fi
teii

=
fj
t
ej
j

∈ S(t1t2)

⇐⇒ fit
ej
j = fjt

ei
i ∈ S

in S. Now, S is a unique factorisation domain so that t
ej
j | fj and teii | fi. Hence there exists

a homogeneous g ∈ S of degree d such that g = fi
t
ei
i

= si for all i.

Conversely, given any homogeneous g ∈ S of degree d, we have a section (si) inOX(d)(X)
given by setting si = g

1
.

Part 2: We shall only prove the case where −d−n− 1 ≤ 0. Now, the group Hn(X,OX(d))
is calculated by the Čech complex

. . . Cn−1(U ,OX(d)) Cn(U ,OX(d)) 0dn−1 dn

which is just

. . .
∏

i0<···<in−1
S(d)(ti0 ...tin−1

) S(d)(t1...tn) 0dn−1 dn
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where U = {D+(ti) }i. We need to calculate im dn−1. To this end, fix σ ∈ S(d)t0...tn . We
may assume that

σ =
tm0
0 . . . tmnn
(t0 . . . tn)l

where
∑n

i=1 mi = d + (n + 1)l. We want to determine when such a σ is not in im dn−1. If
there is an i for which mi ≥ l then we would be able to cancel such a ti from the denominator
so that σ would be in the image of the factor of Cn−1(U ,F) corresponding to a missing Ui.
Moreover, we can assume that mi = 0 for some i, otherwise we may decrease l. Then

d+ (n+ 1)l =
n−1∑
i=0

mi ≤ n(l − 1) = nl − n

so that d + l ≤ −n and so l ≤ −n − d. But by assumption we have −n − d ≤ 1 so that
l = 1. Since each mi < l, the only possibility is then σ = 1

t0...tn
which corresponds to the

case where d = −n− 1. But σ 6∈ im dn−1 so we have

Hn(X,OX(d)) =

{
0 if − d− n− 1 < 0
K · 1

t0...tn
if − d− n− 1 = 0

∼= H0(X,OX(−d− n− 1))

Part 3: This follows immediately from the fact that Hp(X,OX(d)) = Ȟp(X,OX(d)). But
Cp(X,OX(d)) = 0 for all p > n.

Part 4: We may assume that n ≥ 2 or there is nothing to prove. Let Y be the closed
subscheme defined by 〈tn〉 and g : Y → PnK the corresponding closed immersion. Then
Y ∼= Pn−1

K = ProjK[t0, . . . , tn−1] and we have an exact sequence

0 〈tn〉
:

OX g∗OY 0

Now, we have an isomorphism

S(−1)→ 〈tn〉
s 7→ tns

so that 〈tn〉
:

= OX(−1). Hence the exact sequence takes the form

0 OX(−1) OX g∗OY 0

Tensoring with OX(d) yields

0 OX(d− 1) OX(d) g∗OY (d) 0

Taking cohomology yields a long exact sequence

0 H0(X,OX(d− 1)) H0(X,OX(d)) H0(X, g∗OY (d))

H1(X,OX(d− 1)) H1(X,OX(d)) H1(X, g∗OY (d))

Hn−1(X,OX(d− 1)) Hn−1(X,OX(d)) Hn−1(X, g∗OY (d))

Hn(X,OX(d− 1)) Hn(X,OX(d)) Hn(X, g∗OY (d))

α

β
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Now, it is easy to see that Hp(X, g∗OY (d)) = Hp(Y,OY (d)) for all p ≥ 0 since pushing
forward a sheaf is an exact functor. Moreover, Hn(Y,OY (d)) = 0 by Part 3 so the long
exact sequence becomes

0 H0(X,OX(d− 1)) H0(X,OX(d)) H0(Y,OY (d))

H1(X,OX(d− 1)) H1(X,OX(d)) H1(Y,OY (d))

Hn−1(X,OX(d− 1)) Hn−1(X,OX(d)) Hn−1(Y,OY (d))

Hn(X,OX(d− 1)) Hn(X,OX(d)) 0

f1 f2

δ

α

β

γ

Now,

dimK(im γ) = dimK H
n(X,OX(d)) = dimK H

0(X,OX(−n− 1− d)) =

(
−2− d
n− 1

)
dimK H

n(X,OX(d− 1) = dimK H
0(X,OX(−n− d) =

(
−d− 1

n− 1

)
By the Rank-Nullity Theorem, we then have that

dimK(im β) = dimK(ker γ) =

(
−d− 1

n− 1

)
−
(
−2− d
n− 1

)
=

(
−2− d
n− 2

)
On the other hand,

dimK H
n−1(Y,OY (d)) = dimK H

0(Y,OY (−(n− 1)− d− 1)) = dimK H
0(Y,OY (−n− d))

=

(
−n− d+ (n− 1)− 1

(n− 1)− 1

)
=

(
−d− 2

n− 2

)
so we must have that dimK(ker β) = 0 whence β is injective. Similarly,

dimK(kerα) = dimK(im δ) = dimK H
0(Y,OY (d))− dimK(ker δ)

= dimK H
0(Y,OY (d))− dimK(im f2)

= dimK H
0(Y,OY (d))− dimK H

0(X,OX(d)) + dimK(ker f2)

= dimK H
0(Y,OY (d))− dimK H

0(X,OX(d)) + dimK(im f1)

= dimK H
0(Y,OY (d))− dimK H

0(X,OX(d)) + dimK H
0(X,OX(d− 1))

=

(
n− 2 + d

n− 2

)
−
(
n− 1 + d

n− 1

)
+

(
n+ d− 1

n

)
= 0

so that α is injective and δ is the zero map. Now, by induction n, we see that Hp(Y,OY (d)) =

0 for all 0 < p < n − 1 whence the maps Hp(X,OX(d − 1))
θp−→ Hp(X,OX(d)) are isomor-

phisms for 0 < p < n.
Now, using Čech cohomology, the maps βp are induced by the maps

S(d− 1)(ti0 ...tip ) = OX(d− 1)(Ui0,...,ip)→ OX(d)(Ui0,...,ip) = S(d)(ti0 ...tip )
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which is just multiplication by tn. Hence θp is just multiplication by tn. Now let F =⊕
d∈ZOX(d). Then

F(Ui0,...,ip) =
⊕
d∈Z

OX(d)(Ui0,...,ip)
∼=
⊕
d∈Z

S(d)ti0 ...tip
∼= Sti0 ...tip∑

d∈Z

λd ←[ (λd)

The Čech complex is then

0 C0(U ,F) C1(U ,F) . . .

which is nothing but

0
∏
Sti0

∏
Sti0ti1

. . .

Localising this complex at tn gives

0
∏
Sti0 tn

∏
Sti0ti1 tn

. . .

But this is the Cech complex of F|Un with respect to the cover U ′ = {Ui ∩ Un }i∈I . But Un
is affine and so F|Un is quasi-coherent and so

Ȟp(U ′,F|Un) = Hp(Un,F|Un) = 0

for all p > 0. Hence Hp(X,F)|tn = 0 for all 0 < p < n. But this means that for all
w ∈ Hp(X,F), there exists r such that trnw = 0 which implies that for all u ∈ Hp(X,OX(d)),
there exists s such that tsnu = 0. Now, βp was shown to be multiplication by tn and we
have shown that multiplication by tn eventually kills every element of Hp(X,OX(d − 1)).
Hence, in order for βp to be an isomorphism, we must have that Hp(X,OX(d)) = 0 for all
0 < p < n.

Proposition 5.0.2. Let (X,OX) be a ringed space and F a quasi-coherent sheaf on X.
Then there exists l,m ∈ Z and a surjective homomorphism

ϕ :
l⊕

i=1

OX → F(m)

Proof. Proof omitted.

Theorem 5.0.3. Let K be a field and X a closed subscheme of PnK and f : X → PnK the
corresponding closed immersion. If F is a quasi-coherent sheaf on X then

Hp(X,F(d)) = 0

for all p > 0 and for sufficiently d ∈ Z.

Proof. By definition, we have

f∗(F(d)) ∼= (f∗F)(d) = (f∗F)⊗OPn
K
OPnK (d)

Moreover,

Hp(X,F(d)) ∼= Hp(PnK , (f∗F)(d))
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so we can replace X with PnK and F with f∗F and so we can assume that X = PnK . Now
choose, l,m ∈ Z so that we have a surjective homomorphism

ϕ :
l⊕

i=1

OX → F(m)

Let G be the kernel of this morphism so that we have an exact sequence

0 G
l⊕

i=1

OX F(m) 0

Tensoring with OX(d−m) yields

0 G(d−m)
l⊕

i=1

OX(d−m) F(d) 0

Taking cohomology groups yields a long exact sequence

. . . Hp(X,G(d−m)) Hp
(
X,
⊕l

i=1OX(d−m)
)

Hn(X,F(d))

Hp+1(X,G(d−m)) . . .

By Theorem 5.0.1, Hp
(⊕l

i=1OX(d−m)
)

= 0 for all p > 0 and large enough d ∈ Z. By

reverse induction, Hp+1(X,G(d −m)) = 0 for all p + 1 > n since, using Čech cohomology,
there are not enough open sets to intersect for p+ 1 > n. This then forces Hn(X,F(d)) = 0
for large enough d and so by induction on p we have Hp(X,F(d)) = 0 for all p > 0 and
large enough d.

Theorem 5.0.4. Let K be a field and X a closed subscheme of PnK and f : X → PnK the
corresponding closed immersion. If F is a quasi-coherent sheaf on X then Hp(X,F) is a
finite-dimensional K-vector space for all p.

Proof. As before, we can assume that X = PnK . Let m, l ∈ Z be such that we have an exact
sequence

0 G
l⊕

i=1

OX F(m) 0

Tensoring with OX(−m) yields

0 G(−m)
l⊕

i=1

OX(−m) F(d) 0

Taking cohomology groups yields a long exact sequence

. . . Hp(X,G(d−m)) Hp
(
X,
⊕l

i=1OX(−m)
)

Hn(X,F(d))

Hp+1(X,G(−m)) . . .
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By revere induction on p, we see that for all p + 1 > n we have Hp(X,G(−m)) = 0. By
Theorem 5.0.1, we know that

dimK H
p

(
X,

l⊕
i=1

OX(−m)

)
<∞

for all p. This implies that dimK H
n(X,F) < ∞. By induction on p, we then have that

dimK H
p(X,F) <∞.

5.1 Euler Characteristic and Hilbert Polynomials

Definition 5.1.1. Let K be a field and X a scheme projective over K so that we have a
closed immersion f : X → PnK . Let F be a coherent sheaf over X. We define the Euler
characteristic of F to be

χ(X,F) =
∑
p

(−1)p dimK H
p(X,F)

Lemma 5.1.2. Let K be a field and X a scheme projective over K. Suppose that we have
an exact sequence of coherent sheaves over X

0 F1 F2 . . . Fr 0

Then

r∑
i=0

(−1)iχ(X,Fi) = 0

Proof. If r ≤ 2 then the Lemma is trivial. Now suppose that r = 3. Then we have a long
exact sequence of cohomology groups

0 H0(X,F1) H0(X,F2) H0(X,F3)

H1(X,F1) H1(X,F2) H1(X,F3)

Hn−1(X,F1) Hn−1(X,F2) Hn−1(X,F3)

Hn(X,F1) Hn(X,F2) Hn(X,F3) 0

By the Rank-Nullity Theorem, it follows that

dimK H
0(X,F1)− dimK H

0(X,F2) + · · · = 0

Now suppose that r > 3. Let G be the image of F1 → F2. Then we have exact sequences

0 F1 F2 G 0

and

0 G F3 F4 . . .

61



Then by induction we have χ(X,F1)−χ(X,F2)+χ(X,G) = 0 and χ(X,G)−χ(X,F3)+· · · =
0. Subtracting these two equations gives us the Lemma.

Definition 5.1.3. Let K be a field and X a scheme projective over K so that we have a
closed immersion f : X → PnK . Let F be a coherent sheaf over X. We define the Hilbert
polynomial of F to be the function

φF : Z→ Z
d 7→ χ(X,F(d))

Theorem 5.1.4. Let K be a field and X a scheme projective over K so that we have a
closed immersion f : X → PnK. Let F be a coherent sheaf over X. Then φF ∈ Q[d].

Proof. Proof omitted (see handwritten notes).

Example 5.1.5. Let K be a field and X = PnK . We shall calculate φOX . We have that

φOX (d) = χ(X,OX(d)) = dimK H
0(X,OX(d))− dimK H

1(X,OX(d)) + · · · = dimK H
0(X,OX(d))

for large enough d. So we have

φOX (d) =

(
n+ d

d

)
for all d.

Example 5.1.6. Let X be a closed subscheme of PnK where K is a field, defined by 〈h〉
where h is homogeneous of degree r. We have an exact sequence

0 OPnK (−r) OPnK f∗OX 0

so we have

φOX (d) = φf∗OX (d) = φOPn
K

(d)− φOPn
K

(d− r) =

(
d+ n

d

)
−
(
d− r + n

d− r

)
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